找回密码
 立即注册
搜索
热搜: Java Python AI
查看: 514|回复: 0

【视频】咕泡-人工智能深度学习系统班(第八期)

[复制链接]

1133

主题

2

回帖

2906

金钱

管理员

积分
4551
发表于 2025-2-2 14:18:52 | 显示全部楼层 |阅读模式
咕泡-人工智能深度学习系统班(第八期)

├── 1-直播回放
│   ├── 1-开班典礼
│   │   └── 1-开班典礼.mp4
│   ├── 2-直播1:神经网络
│   │   └── 1-神经网络.mp4
│   ├── 3-直播2:卷积神经网络
│   │   └── 1-卷积神经网络.mp4
│   ├── 4-直播3:Transformer架构解读
│   │   └── 1-Transformer架构解读.mp4
│   ├── 5-直播4:视觉Transformer- VIT源码解读
│   │   └── 1-视觉Transformer- VIT源码解读.mp4
│   ├── 6-直播5:图神经网络
│   │   └── 1-图神经网络.mp4
│   ├── 7-直播6:Transformer Decoder在视觉任务的应用
│   │   └── 1-Transformer Decoder在视觉任务的应用.mp4
│   ├── 8-直播7:对比学习与多模态任务
│   │   └── 1-对比学习与多模态任务.mp4
│   ├── 9-直播8:GPT与Hugging face
│   │   └── 1-GPT与Hugging face.mp4
│   ├── 10-直播9:自监督任务
│   │   └── 1-自监督任务.mp4
│   ├── 11-直播10:知识蒸馏
│   │   └── 1-知识蒸馏.mp4
│   ├── 12-直播11:分割Mask2former算法
│   │   └── 1-分割Mask2former算法.mp4
│   ├── 13-直播12:多模态与交叉注意力应用
│   │   └── 1-多模态与交叉注意力应用.mp4
│   ├── 14-直播13:时间序列timesnet与地理分类任务
│   │   └── 1-时间序列timesnet与地理分类任务.mp4
│   ├── 15-直播14:论文写作与就业简历
│   │   └── 1-论文写作与就业简历.mp4
│   └── 16-直播15:知识图谱与LORA
│       └── 1-知识图谱与LORA.mp4
├── 3-深度学习必备核⼼算法
│   ├── 1-神经网络结构
│   │   └── 1-神经网络结构.mp4
│   ├── 2-卷积神经网络
│   │   └── 1-卷积神经网络.mp4
│   ├── 3-Transformer
│   │   └── 1-Transformer.mp4
│   └── 4-VIT源码解读
│       └── 1-VIT源码解读.mp4
├── 4-深度学习框架PyTorch
│   ├── 1-PyTorch框架介绍与配置安装
│   │   ├── 1-PyTorch框架与其他框架区别分析.mp4
│   │   └── 2-CPU与GPU版本安装方法解读.mp4
│   ├── 2-使用神经网络进行分类任务
│   │   ├── 1-数据集与任务概述.mp4
│   │   ├── 2-基本模块应用测试.mp4
│   │   ├── 3-网络结构定义方法.mp4
│   │   ├── 4-数据源定义简介.mp4
│   │   ├── 5-损失与训练模块分析.mp4
│   │   ├── 6-训练一个基本的分类模型.mp4
│   │   └── 7-参数对结果的影响.mp4
│   ├── 3-神经网络回归任务-气温预测
│   │   └── 1-神经网络回归任务-气温预测.mp4
│   ├── 4-卷积网络参数解读分析
│   │   ├── 1-输入特征通道分析.mp4
│   │   ├── 2-卷积网络参数解读.mp4
│   │   └── 3-卷积网络模型训练.mp4
│   ├── 5-图像识别模型与训练策略(重点)
│   │   ├── 1-任务分析与图像数据基本处理.mp4
│   │   ├── 2-数据增强模块.mp4
│   │   ├── 3-数据集与模型选择.mp4
│   │   ├── 4-迁移学习方法解读.mp4
│   │   ├── 5-输出层与梯度设置.mp4
│   │   ├── 6-输出类别个数修改.mp4
│   │   ├── 7-优化器与学习率衰减.mp4
│   │   ├── 8-模型训练方法.mp4
│   │   ├── 9-重新训练全部模型.mp4
│   │   └── 10-测试结果演示分析.mp4
│   ├── 6-DataLoader自定义数据集制作
│   │   ├── 1-Dataloader要完成的任务分析.mp4
│   │   ├── 2-图像数据与标签路径处理.mp4
│   │   ├── 3-Dataloader中需要实现的方法分析.mp4
│   │   └── 4-实用Dataloader加载数据并训练模型.mp4
│   └── 7-LSTM文本分类实战
│       ├── 1-数据集与任务目标分析.mp4
│       ├── 2-文本数据处理基本流程分析.mp4
│       ├── 3-命令行参数与DEBUG.mp4
│       ├── 4-训练模型所需基本配置参数分析.mp4
│       ├── 5-预料表与字符切分.mp4
│       ├── 6-字符预处理转换ID.mp4
│       ├── 7-LSTM网络结构基本定义.mp4
│       ├── 8-网络模型预测结果输出.mp4
│       └── 9-模型训练任务与总结.mp4
├── 5-深度学习框架Tensorflflow
│   ├── 1-tensorflflow安装与简介
│   │   ├── 1-tensorflflow安装与简介.mp4
│   │   ├── 2-Tensorflow2版本简介与心得.mp4
│   │   ├── 3-Tensorflow2版本安装方法.mp4
│   │   └── 4-tf基础操作.mp4
│   ├── 2-神经网络原理解读与整体架构
│   │   ├── 1-深度学习要解决的问题.mp4
│   │   ├── 2-深度学习应用领域.mp4
│   │   ├── 3-计算机视觉任务.mp4
│   │   ├── 4-视觉任务中遇到的问题.mp4
│   │   ├── 5-得分函数.mp4
│   │   ├── 6-损失函数的作用.mp4
│   │   ├── 7-前向传播整体流程.mp4
│   │   ├── 8-返向传播计算方法.mp4
│   │   ├── 9-神经网络整体架构.mp4
│   │   ├── 10-神经网络架构细节.mp4
│   │   ├── 11-神经元个数对结果的影响.mp4
│   │   ├── 12-正则化与激活函数.mp4
│   │   └── 13-神经网络过拟合解决方法.mp4
│   ├── 3-搭建神经⽹络进⾏分类与回归任务
│   │   ├── 1-任务目标与数据集简介
│   │   ├── 2-建模流程与API文档
│   │   ├── 3-网络模型训练
│   │   ├── 4-模型超参数调节与预测结果展示
│   │   ├── 5-分类模型构建
│   │   ├── 6-tf.data模块解读
│   │   └── 7-模型保存与读取实例
│   ├── 4-卷积神经⽹络原理与参数解读
│   │   ├── 1-卷积神经网络应用领域.mp4
│   │   ├── 2-卷积的作用.mp4
│   │   ├── 3-卷积特征值计算方法.mp4
│   │   ├── 4-得到特征图表示.mp4
│   │   ├── 5-步长与卷积核大小对结果的影响.mp4
│   │   ├── 6-边缘填充方法.mp4
│   │   ├── 7-特征图尺寸计算与参数共享.mp4
│   │   ├── 8-池化层的作用.mp4
│   │   ├── 9-整体网络架构.mp4
│   │   ├── 10-VGG网络架构.mp4
│   │   ├── 11-残差网络Resnet.mp4
│   │   └── 12-感受野的作用.mp4
│   ├── 5-项目实战:猫狗识别实战
│   │   ├── 1-猫狗识别任务与数据简介.mp4
│   │   ├── 2-卷积网络涉及参数解读.mp4
│   │   ├── 3-网络架构配置.mp4
│   │   └── 4-卷积模型训练与识别效果展示.mp4
│   ├── 6-图像数据增强实例
│   │   ├── 1-数据增强概述.mp4
│   │   ├── 2-图像数据变换.mp4
│   │   └── 3-猫狗识别任务数据增强实例.mp4
│   ├── 7-训练策略-迁移学习实战
│   │   ├── 1-迁移学习的目标.mp4
│   │   ├── 2-迁移学习策略.mp4
│   │   ├── 3-Resnet原理.mp4
│   │   ├── 4-加载训练好的经典网络模型.mp4
│   │   ├── 5-Callback模块与迁移学习实例.mp4
│   │   ├── 6-tfrecords数据源制作方法.mp4
│   │   └── 7-图像数据处理实例.mp4
│   ├── 8-递归神经⽹络与词向量原理解读
│   │   ├── 1-RNN网络架构解读.mp4
│   │   ├── 2-词向量模型通俗解释.mp4
│   │   ├── 3-模型整体框架.mp4
│   │   ├── 4-训练数据构建.mp4
│   │   ├── 5-CBOW与Skip-gram模型.mp4
│   │   └── 6-负采样方案.mp4
│   ├── 9-项目实战:基于TensorFlow实现word2vec
│   │   ├── 1-任务流程解读.mp4
│   │   ├── 2-模型定义参数设置.mp4
│   │   ├── 3-文本词预处理操作.mp4
│   │   ├── 4-训练batch数据制作.mp4
│   │   └── 5-损失函数定义与训练结果展示.mp4
│   ├── 10-项目实战:基于RNN模型进行文本分类任务
│   │   ├── 1-任务目标与数据介绍.mp4
│   │   ├── 2-RNN模型输入数据维度解读.mp4
│   │   ├── 3-数据映射表制作.mp4
│   │   ├── 4-embedding层向量制作.mp4
│   │   ├── 5-数据生成器构造.mp4
│   │   ├── 6-双向RNN模型定义.mp4
│   │   ├── 7-自定义网络模型架构.mp4
│   │   ├── 8-训练策略指定.mp4
│   │   └── 9-训练文本分类模型.mp4
│   ├── 11-项目实战:将CNN网络应用于文本分类实战
│   │   ├── 1-CNN应用于文本任务原理解析.mp4
│   │   ├── 2-整体流程解读.mp4
│   │   └── 3-网络架构设计与训练.mp4
│   ├── 12-项目实战:时间序列预测
│   │   ├── 1-任务目标与数据源.mp4
│   │   ├── 2-构建时间序列数据.mp4
│   │   ├── 3-训练时间序列数据预测结果.mp4
│   │   ├── 4-多特征预测结果.mp4
│   │   └── 5-序列结果预测.mp4
│   └── 13-项目实战:经典网络架构Resnet实战
│       ├── 1-额外补充-Resnet论文解读.mp4
│       ├── 2-额外补充-Resnet网络架构解读.mp4
│       ├── 3-项目结构概述.mp4
│       ├── 4-数据集处理方法.mp4
│       ├── 5-训练数据构建.mp4
│       ├── 6-网络架构层次解读.mp4
│       ├── 7-前向传播配置.mp4
│       └── 8-训练resnet模型.mp4
├── 6-Opencv图像处理框架实战
│   ├── 1-课程简介与环境配置
│   │   ├── 1-课程简介.mp4
│   │   ├── 2-Python与Opencv配置安装.mp4
│   │   └── 3-Notebook与IDE环境.mp4
│   ├── 2-图像基本操作
│   │   ├── 1-计算机眼中的图像.mp4
│   │   ├── 2-视频的读取与处理.mp4
│   │   ├── 3-ROI区域.mp4
│   │   ├── 4-边界填充.mp4
│   │   └── 5-数值计算.mp4
│   ├── 3-阈值与平滑处理
│   │   ├── 1-图像阈值.mp4
│   │   ├── 2-图像平滑处理.mp4
│   │   └── 3-高斯与中值滤波.mp4
│   ├── 4-图像形态学操作
│   │   ├── 1-腐蚀操作.mp4
│   │   ├── 2-膨胀操作.mp4
│   │   ├── 3-开运算与闭运算.mp4
│   │   ├── 4-梯度计算.mp4
│   │   └── 5-礼帽与黑帽.mp4
│   ├── 5-图像梯度计算
│   │   ├── 1-Sobel算子.mp4
│   │   ├── 2-梯度计算方法.mp4
│   │   └── 3-scharr与lapkacian算子.mp4
│   ├── 6-边缘检测
│   │   ├── 1-Canny边缘检测流程.mp4
│   │   ├── 2-非极大值抑制.mp4
│   │   └── 3-边缘检测效果.mp4
│   ├── 7-图像金字塔与轮廓检测
│   │   ├── 1-图像金字塔定义.mp4
│   │   ├── 2-金字塔制作方法.mp4
│   │   ├── 3-轮廓检测方法.mp4
│   │   ├── 4-轮廓检测结果.mp4
│   │   ├── 5-轮廓特征与近似.mp4
│   │   ├── 6-模板匹配方法.mp4
│   │   └── 7-匹配效果展示.mp4
│   ├── 8-直方图与傅里叶变换
│   │   ├── 1-直方图定义.mp4
│   │   ├── 2-均衡化原理.mp4
│   │   ├── 3-均衡化效果.mp4
│   │   ├── 4-傅里叶概述.mp4
│   │   ├── 5-频域变换结果.mp4
│   │   └── 6-低通与高通滤波.mp4
│   ├── 9-项目实战-信用卡数字识别
│   │   ├── 1-总体流程与方法讲解.mp4
│   │   ├── 2-环境配置与预处理.mp4
│   │   ├── 3-模板处理方法.mp4
│   │   ├── 4-输入数据处理方法.mp4
│   │   └── 5-模板匹配得出识别结果.mp4
│   ├── 10-项目实战-文档扫描OCR识别
│   │   ├── 1-整体流程演示.mp4
│   │   ├── 2-文档轮廓提取.mp4
│   │   ├── 3-原始与变换坐标计算.mp4
│   │   ├── 4-透视变换结果.mp4
│   │   ├── 5-tesseract-ocr安装配置.mp4
│   │   └── 6-文档扫描识别效果.mp4
│   ├── 11-图像特征-harris
│   │   ├── 1-角点检测基本原理.mp4
│   │   ├── 2-基本数学原理.mp4
│   │   ├── 3-求解化简.mp4
│   │   ├── 4-特征归属划分.mp4
│   │   └── 5-opencv角点检测效果.mp4
│   ├── 12-图像特征-sift
│   │   ├── 1-尺度空间定义.mp4
│   │   ├── 2-高斯差分金字塔.mp4
│   │   ├── 3-特征关键点定位.mp4
│   │   ├── 4-生成特征描述.mp4
│   │   ├── 5-特征向量生成.mp4
│   │   └── 6-opencv中sift函数使用.mp4
│   ├── 13-案例实战-全景图像拼接
│   │   ├── 1-特征匹配方法.mp4
│   │   ├── 2-RANSAC算法.mp4
│   │   ├── 3-图像拼接方法.mp4
│   │   └── 4-流程解读.mp4
│   ├── 14-项目实战-停车场车位识别
│   │   ├── 1-任务整体流程.mp4
│   │   ├── 2-所需数据介绍.mp4
│   │   ├── 3-图像数据预处理.mp4
│   │   ├── 4-车位直线检测.mp4
│   │   ├── 5-按列划分区域.mp4
│   │   ├── 6-车位区域划分.mp4
│   │   ├── 7-识别模型构建.mp4
│   │   └── 8-基于视频的车位检测.mp4
│   ├── 15-项目实战-答题卡识别判卷
│   │   ├── 1-整体流程与效果概述.mp4
│   │   ├── 2-预处理操作.mp4
│   │   ├── 3-填涂轮廓检测.mp4
│   │   └── 4-选项判断识别.mp4
│   ├── 16-背景建模
│   │   ├── 1-背景消除-帧差法.mp4
│   │   ├── 2-混合高斯模型.mp4
│   │   ├── 3-学习步骤.mp4
│   │   └── 4-背景建模实战.mp4
│   ├── 17-光流估计
│   │   ├── 1-基本概念.mp4
│   │   ├── 2-Lucas-Kanade算法.mp4
│   │   ├── 3-推导求解.mp4
│   │   └── 4-光流估计实战.mp4
│   ├── 18-Opencv的DNN模块
│   │   ├── 1-dnn模块.mp4
│   │   └── 2-模型加载结果输出.mp4
│   ├── 19-项目实战-目标追踪
│   │   ├── 1-目标追踪概述.mp4
│   │   ├── 2-多目标追踪实战.mp4
│   │   ├── 3-深度学习检测框架加载.mp4
│   │   ├── 4-基于dlib与ssd的追踪.mp4
│   │   ├── 5-多进程目标追踪.mp4
│   │   └── 6-多进程效率提升对比.mp4
│   ├── 20-卷积原理与操作
│   │   ├── 1-卷积神经网络的应用.mp4
│   │   ├── 2-卷积层解释.mp4
│   │   ├── 3-卷积计算过程.mp4
│   │   ├── 4-pading与stride.mp4
│   │   ├── 5-卷积参数共享.mp4
│   │   ├── 6-池化层原理.mp4
│   │   ├── 7-卷积效果演示.mp4
│   │   └── 8-卷积操作流程.mp4
│   └── 21-项目实战-疲劳检测
│       ├── 1-关键点定位概述.mp4
│       ├── 2-获取人脸关键点.mp4
│       ├── 3-定位效果演示.mp4
│       ├── 4-闭眼检测.mp4
│       └── 5-检测效果.mp4
├── 7-综合项目-物体检测经典算法实战
│   ├── 1-物体检测评估指标
│   │   └── 1-物体检测评估指标.mp4
│   ├── 2-深度学习经典检测⽅法概述
│   │   ├── 1-检测任务中阶段的意义.mp4
│   │   ├── 2-不同阶段算法优缺点分析.mp4
│   │   ├── 3-IOU指标计算.mp4
│   │   ├── 4-评估所需参数计算.mp4
│   │   └── 5-map指标计算.mp4
│   ├── 3-YOLO-V1整体思想与网络架构
│   │   ├── 1-YOLO算法整体思路解读.mp4
│   │   ├── 2-检测算法要得到的结果.mp4
│   │   ├── 3-整体网络架构解读.mp4
│   │   ├── 4-位置损失计算.mp4
│   │   └── 5-置信度误差与优缺点分析.mp4
│   ├── 4-YOLO-V2改进细节详解
│   │   ├── 1-V2版本细节升级概述.mp4
│   │   ├── 2-网络结构特点.mp4
│   │   ├── 3-架构细节解读.mp4
│   │   ├── 4-基于聚类来选择先验框尺寸.mp4
│   │   ├── 5-偏移量计算方法.mp4
│   │   ├── 6-坐标映射与还原.mp4
│   │   ├── 7-感受野的作用.mp4
│   │   └── 8-特征融合改进.mp4
│   ├── 5-YOLO-V3核心网络模型
│   │   ├── 1-V3版本改进概述.mp4
│   │   ├── 2-多scale方法改进与特征融合.mp4
│   │   ├── 3-经典变换方法对比分析.mp4
│   │   ├── 4-残差连接方法解读.mp4
│   │   ├── 5-整体网络模型架构分析.mp4
│   │   ├── 6-先验框设计改进.mp4
│   │   └── 7-sotfmax层改进.mp4
│   ├── 6-项目实战-基于V3版本进行源码解读(建议直接跑V5版本)
│   │   ├── 1-数据与环境配置.mp4
│   │   ├── 2-训练参数设置.mp4
│   │   ├── 3-COCO图像数据读取与处理.mp4
│   │   ├── 4-标签文件读取与处理.mp4
│   │   ├── 5-debug模式介绍.mp4
│   │   ├── 6-基于配置文件构建网络模型.mp4
│   │   ├── 7-路由层与shortcut层的作用.mp4
│   │   ├── 8-YOLO层定义解析.mp4
│   │   ├── 9-预测结果计算.mp4
│   │   ├── 10-网格偏移计算.mp4
│   │   ├── 11-模型要计算的损失概述.mp4
│   │   ├── 12-标签值格式修改.mp4
│   │   ├── 13-坐标相对位置计算.mp4
│   │   ├── 14-完成所有损失函数所需计算指标.mp4
│   │   ├── 15-模型训练与总结.mp4
│   │   └── 16-预测效果展示.mp4
│   ├── 7-基于YOLO-V3训练自己的数据集与任务(建议直接跑V5版本)
│   │   ├── 1-Labelme工具安装.mp4
│   │   ├── 2-数据信息标注.mp4
│   │   ├── 3-完成标签制作.mp4
│   │   ├── 4-生成模型所需配置文件.mp4
│   │   ├── 5-json格式转换成yolo-v3所需输入.mp4
│   │   ├── 6-完成输入数据准备工作.mp4
│   │   ├── 7-训练代码与参数配置更改.mp4
│   │   └── 8-训练模型并测试效果.mp4
│   ├── 8-YOLO-V4版本算法解读
│   │   ├── 1-V4版本整体概述.mp4
│   │   ├── 2-V4版本贡献解读.mp4
│   │   ├── 3-数据增强策略分析.mp4
│   │   ├── 4-DropBlock与标签平滑方法.mp4
│   │   ├── 5-损失函数遇到的问题.mp4
│   │   ├── 6-CIOU损失函数定义.mp4
│   │   ├── 7-NMS细节改进.mp4
│   │   ├── 8-SPP与CSP网络结构.mp4
│   │   ├── 9-SAM注意力机制模块.mp4
│   │   ├── 10-PAN模块解读.mp4
│   │   └── 11-激活函数与整体架构总结.mp4
│   ├── 9-V5版本项目配置
│   │   ├── 1-整体项目概述.mp4
│   │   ├── 2-训练自己的数据集方法.mp4
│   │   ├── 3-训练数据参数配置.mp4
│   │   └── 4-测试DEMO演示.mp4
│   ├── 10-V5项目工程源码解读
│   │   ├── 1-数据源DEBUG流程解读.mp4
│   │   ├── 2-图像数据源配置.mp4
│   │   ├── 3-加载标签数据.mp4
│   │   ├── 4-Mosaic数据增强方法.mp4
│   │   ├── 5-数据四合一方法与流程演示.mp4
│   │   ├── 6-getItem构建batch.mp4
│   │   ├── 7-网络架构图可视化工具安装.mp4
│   │   ├── 8-V5网络配置文件解读.mp4
│   │   ├── 9-Focus模块流程分析.mp4
│   │   ├── 10-完成配置文件解析任务.mp4
│   │   ├── 11-前向传播计算.mp4
│   │   ├── 12-BottleneckCSP层计算方法.mp4
│   │   ├── 13-SPP层计算细节分析.mp4
│   │   ├── 14-Head层流程解读.mp4
│   │   ├── 15-上采样与拼接操作.mp4
│   │   ├── 16-输出结果分析.mp4
│   │   ├── 17-超参数解读.mp4
│   │   ├── 18-命令行参数介绍.mp4
│   │   ├── 19-训练流程解读.mp4
│   │   ├── 20-各种训练策略概述.mp4
│   │   └── 21-模型迭代过程.mp4
│   ├── 11-YOLO系列(V7)算法解读
│   │   └── 1-YOLO系列(V7)算法解读.mp4
│   ├── 12-V7源码解读
│   │   ├── 1-命令行参数介绍.mp4
│   │   ├── 2-基本参数作用.mp4
│   │   ├── 3-EMA等训练技巧解读.mp4
│   │   ├── 4-网络结构配置文件解读.mp4
│   │   ├── 5-各模块操作细节分析.mp4
│   │   ├── 6-输出层与配置文件其他模块解读.mp4
│   │   ├── 7-标签分配策略准备操作.mp4
│   │   ├── 8-候选框偏移方法与find3p模块解读.mp4
│   │   ├── 9-得到偏移点所在网格位置.mp4
│   │   ├── 10-完成BuildTargets模块.mp4
│   │   ├── 11-候选框筛选流程分析.mp4
│   │   ├── 12-预测值各项指标获取与调整.mp4
│   │   ├── 13-GT匹配正样本数量计算.mp4
│   │   ├── 14-通过IOU与置信度分配正样本.mp4
│   │   ├── 15-损失函数计算方法.mp4
│   │   ├── 16-辅助头AUX网络结构配置文件解析.mp4
│   │   ├── 17-辅助头损失函数调整.mp4
│   │   ├── 18-BN与卷积权重参数融合方法.mp4
│   │   └── 19-重参数化多分支合并加速.mp4
│   ├── 13-基于Transformer的detr目标检测算法
│   │   ├── 1-DETR目标检测基本思想解读.mp4
│   │   ├── 2-整体网络架构分析.mp4
│   │   ├── 3-位置信息初始化query向量.mp4
│   │   ├── 4-注意力机制的作用方法.mp4
│   │   └── 5-训练过程的策略.mp4
│   ├── 14-detr目标检测源码解读
│   │   ├── 1-项目环境配置解读.mp4
│   │   ├── 2-数据处理与dataloader.mp4
│   │   ├── 3-位置编码作用分析.mp4
│   │   ├── 4-backbone特征提取模块.mp4
│   │   ├── 5-mask与编码模块.mp4
│   │   ├── 6-编码层作用方法.mp4
│   │   ├── 7-Decoder层操作与计算.mp4
│   │   ├── 8-输出预测结果.mp4
│   │   └── 9-损失函数与预测输出.mp4
│   ├── 15-DeformableDetr算法解读
│   │   └── 1-DeformableDetr算法解读.mp4
│   ├── 16-半监督物体检测
│   │   └── 1-半监督物体检测.mp4
│   ├── 17-EfficientNet网络
│   │   └── 1-EfficientNet网络模型.mp4
│   └── 18-EfficientDet检测算法
│       └── 1-EfficientDet检测算法.mp4
├── 8-图像分割实战
│   ├── 1-图像分割及其损失函数概述
│   │   ├── 1-语义分割与实例分割概述.mp4
│   │   ├── 2-分割任务中的目标函数定义.mp4
│   │   └── 3-MIOU评估标准.mp4
│   ├── 2-Unet系列算法讲解
│   │   ├── 1-Unet网络编码与解码过程.mp4
│   │   ├── 2-网络计算流程.mp4
│   │   ├── 3-Unet升级版本改进.mp4
│   │   └── 4-后续升级版本介绍.mp4
│   ├── 3-unet医学细胞分割实战
│   │   ├── 1-医学细胞数据集介绍与参数配置.mp4
│   │   ├── 2-数据增强工具.mp4
│   │   ├── 3-Debug模式演示网络计算流程.mp4
│   │   ├── 4-特征融合方法演示.mp4
│   │   ├── 5-迭代完成整个模型计算任务.mp4
│   │   └── 6-模型效果验证.mp4
│   ├── 4-U2NET显著性检测实战
│   │   ├── 1-任务目标与网络整体介绍.mp4
│   │   ├── 2-显著性检测任务与目标概述.mp4
│   │   ├── 3-编码器模块解读.mp4
│   │   ├── 4-解码器输出结果.mp4
│   │   └── 5-损失函数与应用效果.mp4
│   ├── 5-deeplab系列算法
│   │   ├── 1-deeplab分割算法概述.mp4
│   │   ├── 2-空洞卷积的作用.mp4
│   │   ├── 3-感受野的意义.mp4
│   │   ├── 4-SPP层的作用.mp4
│   │   ├── 5-ASPP特征融合策略.mp4
│   │   └── 6-deeplabV3Plus版本网络架构.mp4
│   ├── 6-基于deeplabV3+版本进⾏VOC分割实战
│   │   ├── 1-PascalVoc数据集介绍.mp4
│   │   ├── 2-项目参数与数据集读取.mp4
│   │   ├── 3-网络前向传播流程.mp4
│   │   ├── 4-ASPP层特征融合.mp4
│   │   └── 5-分割模型训练.mp4
│   ├── 7-医学⼼脏视频数据集分割建模实战
│   │   ├── 1-数据集与任务概述.mp4
│   │   ├── 2-项目基本配置参数.mp4
│   │   ├── 3-任务流程解读.mp4
│   │   ├── 4-文献报告分析.mp4
│   │   ├── 5-补充:视频数据源特征处理方法概述.mp4
│   │   └── 6-补充:R(2plus1)D处理方法分析.mp4
│   ├── 8-分割模型Maskformer系列
│   │   └── 1-分割模型Maskformer系列.mp4
│   ├── 9-补充:Mask2former源码解读
│   │   ├── 1-Backbone获取多层级特征.mp4
│   │   ├── 2-多层级采样点初始化构建.mp4
│   │   ├── 3-多层级输入特征序列创建方法.mp4
│   │   ├── 4-偏移量与权重计算并转换.mp4
│   │   ├── 5-Encoder特征构建方法实例.mp4
│   │   ├── 6-query要预测的任务解读.mp4
│   │   ├── 7-Decoder中的AttentionMask方法.mp4
│   │   ├── 8-损失模块输入参数分析.mp4
│   │   ├── 9-标签分配策略解读.mp4
│   │   ├── 10-正样本筛选损失计算.mp4
│   │   ├── 11-标签分类匹配结果分析.mp4
│   │   ├── 12-最终损失计算流程.mp4
│   │   └── 13-汇总所有损失完成迭代.mp4
│   ├── 10-物体检测框架-MaskRcnn项目介绍与配置
│   │   ├── 1-Mask-Rcnn开源项目简介.mp4
│   │   ├── 2-开源项目数据集.mp4
│   │   └── 3-开源项目数据集.mp4
│   ├── 11-MaskRcnn网络框架源码详解
│   │   ├── 1-FPN层特征提取原理解读.mp4
│   │   ├── 2-FPN网络架构实现解读.mp4
│   │   ├── 3-生成框比例设置.mp4
│   │   ├── 4-基于不同尺度特征图生成所有框.mp4
│   │   ├── 5-RPN层的作用与实现解读.mp4
│   │   ├── 6-候选框过滤方法.mp4
│   │   ├── 7-Proposal层实现方法.mp4
│   │   ├── 8-DetectionTarget层的作用.mp4
│   │   ├── 9-正负样本选择与标签定义.mp4
│   │   ├── 10-RoiPooling层的作用与目的.mp4
│   │   ├── 11-RorAlign操作的效果.mp4
│   │   └── 12-整体框架回顾.mp4
│   └── 12-基于MASK-RCNN框架训练自己的数据与任务
│       ├── 1-Labelme工具安装.mp4
│       ├── 2-使用labelme进行数据与标签标注.mp4
│       ├── 3-完成训练数据准备工作.mp4
│       ├── 4-maskrcnn源码修改方法.mp4
│       ├── 5-基于标注数据训练所需任务.mp4
│       └── 6-测试与展示模块.mp4
├── 9-走向AI论文实验与项目实战的捷径-MMLAB实战系列
│   ├── 1-MMCV安装方法
│   │   └── 1-MMCV安装方法.mp4
│   ├── 2-第一模块:分类任务基本操作
│   │   ├── 1-MMCLS问题修正.mp4
│   │   ├── 2-准备MMCLS项目.mp4
│   │   ├── 3-基本参数配置解读.mp4
│   │   ├── 4-各模块配置文件组成.mp4
│   │   ├── 5-生成完整配置文件.mp4
│   │   ├── 6-根据文件夹定义数据集.mp4
│   │   ├── 7-构建自己的数据集.mp4
│   │   └── 8-训练自己的任务.mp4
│   ├── 3-第一模块:训练结果测试与验证
│   │   ├── 1-测试DEMO效果.mp4
│   │   ├── 2-测试评估模型效果.mp4
│   │   ├── 3-MMCLS中增加一个新的模块.mp4
│   │   ├── 4-修改配置文件中的参数.mp4
│   │   ├── 5-数据增强流程可视化展示.mp4
│   │   ├── 6-Grad-Cam可视化方法.mp4
│   │   ├── 7-可视化细节与效果分析.mp4
│   │   ├── 8-MMCLS可视化模块应用.mp4
│   │   └── 9-模型分析脚本使用.mp4
│   ├── 4-第一模块:模型源码DEBUG演示
│   │   ├── 1-VIT任务概述.mp4
│   │   ├── 2-数据增强模块概述分析.mp4
│   │   ├── 3-PatchEmbedding层.mp4
│   │   ├── 4-前向传播基本模块.mp4
│   │   └── 5-CLS与输出模块.mp4
│   ├── 5-第二模块:使用分割模块训练自己的数据集
│   │   ├── 1-项目配置基本介绍.mp4
│   │   ├── 2-数据集标注与制作方法.mp4
│   │   ├── 3-根据预测类别数修改配置文件.mp4
│   │   ├── 4-加载预训练模型开始训练.mp4
│   │   └── 5-预测DEMO演示.mp4
│   ├── 6-第二模块:基于Unet进行各种策略修改
│   │   ├── 1-配置文件解读.mp4
│   │   ├── 2-编码层模块.mp4
│   │   ├── 3-上采样与输出层.mp4
│   │   ├── 4-辅助层的作用.mp4
│   │   ├── 5-给Unet添加一个neck层.mp4
│   │   ├── 6-如何修改参数适配网络结构.mp4
│   │   ├── 7-将Unet特征提取模块替换成transformer.mp4
│   │   └── 8-VIT模块源码分析.mp4
│   ├── 7-第二模块:分割任务CVPR最新Backbone设计及其应用
│   │   ├── 1-注册自己的Backbone模块.mp4
│   │   ├── 2-配置文件指定.mp4
│   │   ├── 3-DEBUG解读Backbone设计.mp4
│   │   ├── 4-PatchEmbedding的作用与实现.mp4
│   │   ├── 5-卷积位置编码计算方法.mp4
│   │   ├── 6-近似Attention模块实现.mp4
│   │   ├── 7-完成特征提取与融合模块.mp4
│   │   ├── 8-分割输出模块.mp4
│   │   ├── 9-全局特征的作用与实现.mp4
│   │   └── 10-汇总多层级特征进行输出.mp4
│   ├── 8-第三模块:mmdet训练自己的数据任务
│   │   ├── 1-数据集标注与标签获取.mp4
│   │   ├── 2-COCO数据标注格式.mp4
│   │   ├── 3-通过脚本生成COCO数据格式.mp4
│   │   ├── 4-配置文件数据增强策略分析.mp4
│   │   ├── 5-训练所需配置说明.mp4
│   │   ├── 6-模型训练与DEMO演示.mp4
│   │   ├── 7-模型测试与可视化分析模块.mp4
│   │   └── 8-补充:评估指标.mp4
│   ├── 9-第三模块:DeformableDetr物体检测源码分析
│   │   ├── 1-特征提取与位置编码.mp4
│   │   ├── 2-序列特征展开并叠加.mp4
│   │   ├── 3-得到相对位置点编码.mp4
│   │   ├── 4-准备Encoder编码层所需全部输入.mp4
│   │   ├── 5-编码层中的序列分析.mp4
│   │   ├── 6-偏移量offset计算.mp4
│   │   ├── 7-偏移量对齐操作.mp4
│   │   ├── 8-Encoder层完成特征对齐.mp4
│   │   ├── 9-Decoder要完成的操作.mp4
│   │   ├── 10-分类与回归输出模块.mp4
│   │   └── 11-预测输出结果与标签匹配模块.mp4
│   ├── 10-第三模块:DeformableDetr算法解读
│   │   └── 1-DeformableDetr算法解读.mp4
│   ├── 11-补充:Mask2former源码解读
│   │   ├── 1-Backbone获取多层级特征.mp4
│   │   ├── 2-多层级采样点初始化构建.mp4
│   │   ├── 3-多层级输入特征序列创建方法.mp4
│   │   ├── 4-偏移量与权重计算并转换.mp4
│   │   ├── 5-Encoder特征构建方法实例.mp4
│   │   ├── 6-query要预测的任务解读.mp4
│   │   ├── 7-Decoder中的AttentionMask方法.mp4
│   │   ├── 8-损失模块输入参数分析.mp4
│   │   ├── 9-标签分配策略解读.mp4
│   │   ├── 10-正样本筛选损失计算.mp4
│   │   ├── 11-标签分类匹配结果分析.mp4
│   │   ├── 12-最终损失计算流程.mp4
│   │   └── 13-汇总所有损失完成迭代.mp4
│   ├── 12-KIE关键信息抽取与视频超分辨率重构
│   │   └── 1-KIE关键信息抽取与视频超分辨率重构.mp4
│   ├── 13-第四模块:DBNET文字检测
│   │   ├── 1-文字检测数据概述与配置文件.mp4
│   │   ├── 2-配置文件参数设置.mp4
│   │   ├── 3-Neck层特征组合.mp4
│   │   ├── 4-损失函数模块概述.mp4
│   │   └── 5-损失计算方法.mp4
│   ├── 14-第四模块:ANINET文字识别
│   │   ├── 1-数据集与环境概述.mp4
│   │   ├── 2-配置文件修改方法.mp4
│   │   ├── 3-Bakbone模块得到特征.mp4
│   │   ├── 4-视觉Transformer模块的作用.mp4
│   │   ├── 5-视觉模型中的编码与解码的效果.mp4
│   │   ├── 6-文本模型中的结构分析.mp4
│   │   ├── 7-迭代修正模块.mp4
│   │   └── 8-输出层与损失计算.mp4
│   ├── 15-第四模块:KIE基于图模型的关键信息抽取
│   │   ├── 1-配置文件以及要完成的任务解读.mp4
│   │   ├── 2-KIE数据集格式调整方法.mp4
│   │   ├── 3-配置文件与标签要进行处理操作.mp4
│   │   ├── 4-边框要计算的特征分析.mp4
│   │   ├── 5-标签数据处理与关系特征提取.mp4
│   │   ├── 6-特征合并处理.mp4
│   │   ├── 7-准备拼接边与点特征.mp4
│   │   └── 8-整合得到图模型输入特征.mp4
│   ├── 16-第五模块:stylegan2源码解读
│   │   ├── 1-要完成的任务与基本思想概述.mp4
│   │   ├── 2-得到style特征编码.mp4
│   │   ├── 3-特征编码风格拼接.mp4
│   │   ├── 4-基础风格特征卷积模块.mp4
│   │   ├── 5-上采样得到输出结果.mp4
│   │   └── 6-损失函数概述.mp4
│   ├── 17-第六模块:BasicVSR++视频超分辨重构源码解读
│   │   ├── 1-要完成的任务分析与配置文件.mp4
│   │   ├── 2-特征基础提取模块.mp4
│   │   ├── 3-光流估计网络模块.mp4
│   │   ├── 4-基于光流完成对齐操作.mp4
│   │   ├── 5-偏移量计算方法.mp4
│   │   ├── 6-双向计算特征对齐.mp4
│   │   ├── 7-提特征传递流程分析.mp4
│   │   ├── 8-序列传播计算.mp4
│   │   ├── 9-准备变形卷积模块的输入.mp4
│   │   ├── 10-传播流程整体完成一圈.mp4
│   │   └── 11-完成输出结果.mp4
│   ├── 18-第七模块:多模态3D目标检测算法源码解读
│   │   ├── 1-环境配置与数据集概述.mp4
│   │   ├── 2-数据与标注文件介绍.mp4
│   │   ├── 3-基本流程梳理并进入debug模式.mp4
│   │   ├── 4-数据与图像特征提取模块.mp4
│   │   ├── 5-体素索引位置获取.mp4
│   │   ├── 6-体素特征提取方法解读.mp4
│   │   ├── 7-体素特征计算方法分析.mp4
│   │   ├── 8-全局体素特征提取.mp4
│   │   ├── 9-多模态特征融合.mp4
│   │   ├── 10-3D卷积特征融合.mp4
│   │   └── 11-输出层预测结果.mp4
│   ├── 19-第八模块:模型蒸馏应用实例
│   │   ├── 1-任务概述与工具使用.mp4
│   │   ├── 2-Teacher与Student网络结构定义.mp4
│   │   ├── 3-训练T与S得到蒸馏模型.mp4
│   │   ├── 4-开始模型训练过程与问题修正.mp4
│   │   ├── 5-日志输出与模型分离.mp4
│   │   ├── 6-分别得到Teacher与Student模型.mp4
│   │   └── 7-实际测试效果演示.mp4
│   ├── 20-第八模块:模型剪枝方法概述分析
│   │   ├── 1-SuperNet网络结构分析与剪枝概述.mp4
│   │   └── 2-搜索匹配到符合计算量的模型并训练.mp4
│   ├── 21-第九模块:mmaction行为识别
│   │   └── 1-创建自己的行为识别标注数据集.mp4
│   ├── 22-OCR算法解读
│   │   └── 1-OCR算法解读.mp4
│   └── 23-额外补充-在源码中加入各种注意力机制方法
│       └── 1-在源码中加入各种注意力机制方法.mp4
├── 10-经典视觉项目实战:行为识别、姿态估计、目标追踪
│   ├── 1-slowfast算法知识点通俗解读
│   │   ├── 1-slowfast核心思想解读.mp4
│   │   ├── 2-核心网络结构模块分析.mp4
│   │   ├── 3-数据采样曾的作用.mp4
│   │   ├── 4-模型网络结构设计.mp4
│   │   └── 5-特征融合模块与总结分析.mp4
│   ├── 2-slowfast项目环境配置与配置文件
│   │   ├── 1-环境基本配置解读.mp4
│   │   ├── 2-目录各文件分析.mp4
│   │   ├── 3-配置文件作用解读.mp4
│   │   ├── 4-测试DEMO演示.mp4
│   │   ├── 5-训练所需标签文件说明.mp4
│   │   ├── 6-训练所需视频数据准备.mp4
│   │   ├── 7-视频数据集切分操作.mp4
│   │   └── 8-完成视频分帧操作.mp4
│   ├── 3-slowfast源码详细解读
│   │   ├── 1-模型所需配置文件参数读取.mp4
│   │   ├── 2-数据处理概述.mp4
│   │   ├── 3-dataloader数据遍历方法.mp4
│   │   ├── 4-数据与标签读取实例.mp4
│   │   ├── 5-图像数据所需预处理方法.mp4
│   │   ├── 6-slow与fast分别执行采样操作.mp4
│   │   ├── 7-分别计算特征图输出结果.mp4
│   │   ├── 8-slow与fast特征图拼接操作.mp4
│   │   ├── 9-resnetBolock操作.mp4
│   │   └── 10-RoiAlign与输出层.mp4
│   ├── 4-基于3D卷积的视频分析与动作识别
│   │   ├── 1-3D卷积原理解读.mp4
│   │   ├── 2-UCF101动作识别数据集简介.mp4
│   │   ├── 3-测试效果与项目配置.mp4
│   │   ├── 4-视频数据预处理方法.mp4
│   │   ├── 5-数据Batch制作方法.mp4
│   │   ├── 6-3D卷积网络所涉及模块.mp4
│   │   └── 7-训练网络模型.mp4
│   ├── 5-视频异常检测算法与元学习
│   │   ├── 1-异常检测要解决的问题与数据集介绍.mp4
│   │   ├── 2-基本思想与流程分析.mp4
│   │   ├── 3-预测与常见问题.mp4
│   │   ├── 4-Meta-Learn要解决的问题.mp4
│   │   ├── 5-学习能力与参数定义.mp4
│   │   ├── 6-如何找到合适的初始化参数.mp4
│   │   └── 7-MAML算法流程解读.mp4
│   ├── 6-视频异常检测CVPR2021论文及其源码解读
│   │   ├── 1-论文概述与环境配置.mp4
│   │   ├── 2-数据集配置与读取.mp4
│   │   ├── 3-模型编码与解码结构.mp4
│   │   ├── 4-注意力机制模块打造.mp4
│   │   ├── 5-损失函数的目的.mp4
│   │   ├── 6-特征图生成.mp4
│   │   └── 7-MetaLearn与输出.mp4
│   ├── 7-基础补充-Resnet模型及其应用实例
│   │   ├── 1-医学疾病数据集介绍.mp4
│   │   ├── 2-Resnet网络架构原理分析.mp4
│   │   ├── 3-dataloader加载数据集.mp4
│   │   ├── 4-Resnet网络前向传播.mp4
│   │   ├── 5-残差网络的shortcut操作.mp4
│   │   ├── 6-特征图升维与降采样操作.mp4
│   │   └── 7-网络整体流程与训练演示.mp4
│   ├── 8-课程介绍
│   │   └── 1-课程介绍.mp4
│   ├── 9-姿态估计OpenPose系列算法解读
│   │   ├── 1-姿态估计要解决的问题分析.mp4
│   │   ├── 2-姿态估计应用领域概述.mp4
│   │   ├── 3-传统topdown方法的问题.mp4
│   │   ├── 4-要解决的两个问题分析.mp4
│   │   ├── 5-基于高斯分布预测关键点位置.mp4
│   │   ├── 6-各模块输出特征图解读.mp4
│   │   ├── 7-PAF向量登场.mp4
│   │   ├── 8-PAF标签设计方法.mp4
│   │   ├── 9-预测时PAF积分计算方法.mp4
│   │   ├── 10-匹配方法解读.mp4
│   │   ├── 11-CPM模型特点.mp4
│   │   └── 12-算法流程与总结.mp4
│   ├── 10-OpenPose算法源码分析
│   │   ├── 1-数据集与路径配置解读.mp4
│   │   ├── 2-读取图像与标注信息.mp4
│   │   ├── 3-关键点与躯干特征图初始化.mp4
│   │   ├── 4-根据关键点位置设计关键点标签.mp4
│   │   ├── 5-准备构建PAF躯干标签.mp4
│   │   ├── 6-各位置点归属判断.mp4
│   │   ├── 7-特征图各点累加向量计算.mp4
│   │   ├── 8-完成PAF特征图制作.mp4
│   │   ├── 9-网络模型一阶段输出.mp4
│   │   └── 10-多阶段输出与预测.mp4
│   ├── 11-deepsort算法知识点解读
│   │   ├── 1-卡尔曼滤波通俗解释.mp4
│   │   ├── 2-卡尔曼滤波要完成的任务.mp4
│   │   ├── 3-任务本质分析.mp4
│   │   ├── 4-基于观测值进行最优估计.mp4
│   │   ├── 5-预测与更新操作.mp4
│   │   ├── 6-追踪中的状态量.mp4
│   │   ├── 7-匈牙利匹配算法概述.mp4
│   │   ├── 8-匹配小例子分析.mp4
│   │   ├── 9-REID特征的作用.mp4
│   │   ├── 10-sort与deepsort建模流程分析.mp4
│   │   ├── 11-预测与匹配流程解读.mp4
│   │   └── 12-追踪任务流程拆解.mp4
│   ├── 12-deepsort源码解读
│   │   ├── 1-项目环境配置.mp4
│   │   ├── 2-参数与DEMO演示.mp4
│   │   ├── 3-针对检测结果初始化track.mp4
│   │   ├── 4-对track执行预测操作.mp4
│   │   ├── 5-状态量预测结果.mp4
│   │   ├── 6-IOU代价矩阵计算.mp4
│   │   ├── 7-参数更新操作.mp4
│   │   ├── 8-级联匹配模块.mp4
│   │   ├── 9-ReID特征代价矩阵计算.mp4
│   │   └── 10-匹配结果与总结.mp4
│   ├── 13-YOLO-V4版本算法解读
│   │   ├── 1-V4版本整体概述.mp4
│   │   ├── 2-V4版本贡献解读.mp4
│   │   ├── 3-数据增强策略分析.mp4
│   │   ├── 4-DropBlock与标签平滑方法.mp4
│   │   ├── 5-损失函数遇到的问题.mp4
│   │   ├── 6-CIOU损失函数定义.mp4
│   │   ├── 7-NMS细节改进.mp4
│   │   ├── 8-SPP与CSP网络结构.mp4
│   │   ├── 9-SAM注意力机制模块.mp4
│   │   ├── 10-PAN模块解读.mp4
│   │   └── 11-激活函数与整体架构总结.mp4
│   ├── 14-V5版本项目配置
│   │   ├── 1-整体项目概述.mp4
│   │   ├── 2-训练自己的数据集方法.mp4
│   │   ├── 3-训练数据参数配置.mp4
│   │   └── 4-测试DEMO演示.mp4
│   └── 15-V5项目工程源码解读
│       ├── 1-数据源DEBUG流程解读.mp4
│       ├── 2-图像数据源配置.mp4
│       ├── 3-加载标签数据.mp4
│       ├── 4-Mosaic数据增强方法.mp4
│       ├── 5-数据四合一方法与流程演示.mp4
│       ├── 6-getItem构建batch.mp4
│       ├── 7-网络架构图可视化工具安装.mp4
│       ├── 8-V5网络配置文件解读.mp4
│       ├── 9-Focus模块流程分析.mp4
│       ├── 10-完成配置文件解析任务.mp4
│       ├── 11-前向传播计算.mp4
│       ├── 12-BottleneckCSP层计算方法.mp4
│       ├── 13-1-SPP层计算细节分析.mp4
│       ├── 14-2-Head层流程解读.mp4
│       ├── 15-上采样与拼接操作.mp4
│       ├── 16-输出结果分析.mp4
│       ├── 17-超参数解读.mp4
│       ├── 18-命令行参数介绍.mp4
│       ├── 19-训练流程解读.mp4
│       ├── 20-各种训练策略概述.mp4
│       └── 21-模型迭代过程.mp4
├── 11-2022论⽂必备-Transformer实战系列
│   ├── 1-Transformer算法解读
│   │   └── 1-Transformer算法解读.mp4
│   ├── 2-视觉Transformer及其源码分析
│   │   └── 1-视觉Transformer及其源码分析.mp4
│   ├── 3-VIT算法模型源码解读
│   │   ├── 1-项目配置说明.mp4
│   │   ├── 2-输入序列构建方法解读.mp4
│   │   ├── 3-注意力机制计算.mp4
│   │   └── 4-输出层计算结果.mp4
│   ├── 4-swintransformer算法原理解析
│   │   ├── 1-swintransformer整体概述.mp4
│   │   ├── 2-要解决的问题及其优势分析.mp4
│   │   ├── 3-一个block要完成的任务.mp4
│   │   ├── 4-获取各窗口输入特征.mp4
│   │   ├── 5-基于窗口的注意力机制解读.mp4
│   │   ├── 6-窗口偏移操作的实现.mp4
│   │   ├── 7-偏移细节分析及其计算量概述.mp4
│   │   ├── 8-整体网络架构整合.mp4
│   │   ├── 9-下采样操作实现方法.mp4
│   │   └── 10-分层计算方法.mp4
│   ├── 5-swintransformer源码解读
│   │   ├── 1-数据与环境配置解读.mp4
│   │   ├── 2-图像数据patch编码.mp4
│   │   ├── 3-数据按window进行划分计算.mp4
│   │   ├── 4-基础attention计算模块.mp4
│   │   ├── 5-窗口位移模块细节分析.mp4
│   │   ├── 6-patchmerge下采样操作.mp4
│   │   ├── 7-各block计算方法解读.mp4
│   │   └── 8-输出层概述.mp4
│   ├── 6-基于Transformer的detr目标检测算法
│   │   ├── 1-DETR目标检测基本思想解读.mp4
│   │   ├── 2-整体网络架构分析.mp4
│   │   ├── 3-位置信息初始化query向量.mp4
│   │   ├── 4-注意力机制的作用方法.mp4
│   │   └── 5-训练过程的策略.mp4
│   ├── 7-detr目标检测源码解读
│   │   ├── 1-项目环境配置解读.mp4
│   │   ├── 2-数据处理与dataloader.mp4
│   │   ├── 3-位置编码作用分析.mp4
│   │   ├── 4-backbone特征提取模块.mp4
│   │   ├── 5-mask与编码模块.mp4
│   │   ├── 6-编码层作用方法.mp4
│   │   ├── 7-Decoder层操作与计算.mp4
│   │   ├── 8-输出预测结果.mp4
│   │   └── 9-损失函数与预测输出.mp4
│   ├── 8-DeformableDetr算法解读
│   │   └── 1-DeformableDetr算法解读.mp4
│   ├── 9-DeformableDetr物体检测源码分析
│   │   ├── 1-特征提取与位置编码.mp4
│   │   ├── 2-序列特征展开并叠加.mp4
│   │   ├── 3-得到相对位置点编码.mp4
│   │   ├── 4-准备Encoder编码层所需全部输入.mp4
│   │   ├── 5-编码层中的序列分析.mp4
│   │   ├── 6-偏移量offset计算.mp4
│   │   ├── 7-偏移量对齐操作.mp4
│   │   ├── 8-Encoder层完成特征对齐.mp4
│   │   ├── 9-Decoder要完成的操作.mp4
│   │   ├── 10-分类与回归输出模块.mp4
│   │   └── 11-预测输出结果与标签匹配模块.mp4
│   ├── 10-MedicalTrasnformer论文解读
│   │   ├── 1-论文整体分析.mp4
│   │   ├── 2-核心思想分析.mp4
│   │   ├── 3-网络结构计算流程概述.mp4
│   │   ├── 4-论文公式计算分析.mp4
│   │   ├── 5-位置编码的作用与效果.mp4
│   │   └── 6-拓展应用分析.mp4
│   ├── 11-MedicalTransformer源码解读
│   │   ├── 1-项目环境配置.mp4
│   │   ├── 2-医学数据介绍与分析.mp4
│   │   ├── 3-基本处理操作.mp4
│   │   ├── 4-AxialAttention实现过程.mp4
│   │   ├── 5-位置编码向量解读.mp4
│   │   ├── 6-注意力计算过程与方法.mp4
│   │   └── 7-局部特征提取与计算.mp4
│   ├── 12-商汤LoFTR算法解读
│   │   ├── 1-特征匹配的应用场景.mp4
│   │   ├── 2-特征匹配的基本流程分析.mp4
│   │   ├── 3-整体流程梳理分析.mp4
│   │   ├── 4-CrossAttention的作用与效果.mp4
│   │   ├── 5-transformer构建匹配特征.mp4
│   │   ├── 6-粗粒度匹配过程与作用.mp4
│   │   ├── 7-特征图拆解操作.mp4
│   │   ├── 8-细粒度匹配的作用与方法.mp4
│   │   ├── 9-基于期望预测最终位置.mp4
│   │   └── 10-总结分析.mp4
│   ├── 13-局部特征关键点匹配实战
│   │   ├── 1-项目与参数配置解读.mp4
│   │   ├── 2-DEMO效果演示.mp4
│   │   ├── 3-backbone特征提取模块.mp4
│   │   ├── 4-注意力机制的作用与效果分析.mp4
│   │   ├── 5-特征融合模块实现方法.mp4
│   │   ├── 6-cross关系计算方法实例.mp4
│   │   ├── 7-粗粒度匹配过程.mp4
│   │   ├── 8-完成基础匹配模块.mp4
│   │   ├── 9-精细化调整方法与实例.mp4
│   │   ├── 10-得到精细化输出结果.mp4
│   │   └── 11-通过期望计算最终输出.mp4
│   ├── 14-分割模型Maskformer系列
│   │   └── 1-分割模型Maskformer系列.mp4
│   ├── 15-Mask2former源码解读
│   │   ├── 1-Backbone获取多层级特征.mp4
│   │   ├── 2-多层级采样点初始化构建.mp4
│   │   ├── 3-多层级输入特征序列创建方法.mp4
│   │   ├── 4-偏移量与权重计算并转换.mp4
│   │   ├── 5-Encoder特征构建方法实例.mp4
│   │   ├── 6-query要预测的任务解读.mp4
│   │   ├── 7-Decoder中的AttentionMask方法.mp4
│   │   ├── 8-损失模块输入参数分析.mp4
│   │   ├── 9-标签分配策略解读.mp4
│   │   ├── 10-正样本筛选损失计算.mp4
│   │   ├── 11-标签分类匹配结果分析.mp4
│   │   ├── 12-最终损失计算流程.mp4
│   │   └── 13-汇总所有损失完成迭代.mp4
│   ├── 16-BEV特征空间
│   │   └── 1-BEV特征空间.mp4
│   ├── 17-BevFormer源码解读
│   │   ├── 1-环境配置方法解读.mp4
│   │   ├── 2-数据集下载与配置方法.mp4
│   │   ├── 3-特征提取以及BEV空间初始化.mp4
│   │   ├── 4-特征对齐与位置编码初始化.mp4
│   │   ├── 5-Reference初始点构建.mp4
│   │   ├── 6-BEV空间与图像空间位置对应.mp4
│   │   ├── 7-注意力机制模块计算方法.mp4
│   │   ├── 8-BEV空间特征构建.mp4
│   │   ├── 9-Decoder要完成的任务分析.mp4
│   │   ├── 10-获取当前BEV特征.mp4
│   │   ├── 11-Decoder级联校正模块.mp4
│   │   └── 12-损失函数与预测可视化.mp4
│   ├── 18-时间序列预测
│   │   └── 1-时间序列预测.mp4
│   ├── 19-Informer时间序列源码解读
│   │   └── 1-Informer时间序列源码解读.mp4
│   └── 20-Huggingface与NLP(讲故事)
│       └── 1-Huggingface与NLP(讲故事).mp4
├── 12-图神经网络实战
│   ├── 1-图神经网络基础
│   │   ├── 1-图神经网络应用领域分析.mp4
│   │   ├── 2-图基本模块定义.mp4
│   │   ├── 3-邻接矩阵的定义.mp4
│   │   ├── 4-GNN中常见任务.mp4
│   │   ├── 5-消息传递计算方法.mp4
│   │   └── 6-多层GCN的作用.mp4
│   ├── 2-图卷积GCN模型
│   │   ├── 1-GCN基本模型概述.mp4
│   │   ├── 2-图卷积的基本计算方法.mp4
│   │   ├── 3-邻接的矩阵的变换.mp4
│   │   └── 4-GCN变换原理解读.mp4
│   ├── 3-图模型必备神器PyTorch Geometric安装与使用
│   │   ├── 1-PyTorch Geometric工具包安装与配置方法.mp4
│   │   ├── 2-数据集与邻接矩阵格式.mp4
│   │   ├── 3-模型定义与训练方法.mp4
│   │   └── 4-文献引用数据集分类案例实战.mp4
│   ├── 4-使用PyTorch Geometric构建自己的图数据集
│   │   ├── 1-构建数据集基本方法.mp4
│   │   ├── 2-数据集与任务背景概述.mp4
│   │   ├── 3-数据集基本预处理.mp4
│   │   ├── 4-用户行为图结构创建.mp4
│   │   ├── 5-数据集创建函数介绍.mp4
│   │   ├── 6-网络结构定义模块.mp4
│   │   ├── 7-TopkPooling进行下采样任务.mp4
│   │   ├── 8-获取全局特征.mp4
│   │   └── 9-模型训练与总结.mp4
│   ├── 5-图注意力机制与序列图模型
│   │   ├── 1-图注意力机制的作用与方法.mp4
│   │   ├── 2-邻接矩阵计算图Attention.mp4
│   │   ├── 3-序列图神经网络TGCN应用.mp4
│   │   └── 4-序列图神经网络细节.mp4
│   ├── 6-图相似度论文解读
│   │   ├── 1-要完成的任务分析.mp4
│   │   ├── 2-基本方法概述解读.mp4
│   │   ├── 3-图模型提取全局与局部特征.mp4
│   │   ├── 4-NTN模块的作用与效果.mp4
│   │   ├── 5-点之间的对应关系计算.mp4
│   │   └── 6-结果输出与总结.mp4
│   ├── 7-图相似度计算实战
│   │   ├── 1-数据集与任务概述.mp4
│   │   ├── 2-图卷积特征提取模块.mp4
│   │   ├── 3-分别计算不同Batch点的分布.mp4
│   │   ├── 4-获得直方图特征结果.mp4
│   │   ├── 5-图的全局特征构建.mp4
│   │   ├── 6-NTN图相似特征提取.mp4
│   │   └── 7-预测得到相似度结果.mp4
│   ├── 8-基于图模型的轨迹估计
│   │   ├── 1-数据集与标注信息解读.mp4
│   │   ├── 2-整体三大模块分析.mp4
│   │   ├── 3-特征工程的作用与效果.mp4
│   │   ├── 4-传统方法与现在向量空间对比.mp4
│   │   ├── 5-输入细节分析.mp4
│   │   ├── 6-子图模块构建方法.mp4
│   │   ├── 7-特征融合模块分析.mp4
│   │   └── 8-VectorNet输出层分析.mp4
│   ├── 9-图模型轨迹估计实战
│   │   ├── 1-数据与环境配置.mp4
│   │   ├── 2-训练数据准备.mp4
│   │   ├── 3-Agent特征提取方法.mp4
│   │   ├── 4-DataLoader构建图结构.mp4
│   │   └── 5-SubGraph与Attention模型流程.mp4
│   ├── 10-基于图模型的时间序列预测
│   │   └── 1-基于图模型的时间序列预测.mp4
│   └── 11-异构图神经网络
│       └── 1-异构图神经网络.mp4
├── 13-3D点云实战
│   ├── 1-3D点云实战 3D点云应用领域分析
│   │   ├── 1-点云数据概述.mp4
│   │   ├── 2-点云应用领域与发展分析.mp4
│   │   ├── 3-点云分割任务.mp4
│   │   ├── 4-点云补全任务.mp4
│   │   ├── 5-点云检测与配准任务.mp4
│   │   └── 6-点云数据特征提取概述与预告.mp4
│   ├── 2-3D点云PointNet算法
│   │   ├── 1-3D数据应用领域与点云介绍.mp4
│   │   ├── 2-点云数据可视化展示.mp4
│   │   ├── 3-点云数据特性和及要解决的问题.mp4
│   │   ├── 4-PointNet算法出发点解读.mp4
│   │   └── 5-PointNet算法网络架构解读.mp4
│   ├── 3-PointNet++算法解读
│   │   ├── 1-PointNet升级版算法要解决的问题.mp4
│   │   ├── 2-最远点采样方法.mp4
│   │   ├── 3-分组Group方法原理解读.mp4
│   │   ├── 4-整体流程概述分析.mp4
│   │   ├── 5-分类与分割问题解决方案.mp4
│   │   └── 6-遇到的问题及改进方法分析.mp4
│   ├── 4-Pointnet++项目实战
│   │   ├── 1-项目文件概述.mp4
│   │   ├── 2-数据读取模块配置.mp4
│   │   ├── 3-DEBUG解读网络模型架构.mp4
│   │   ├── 4-最远点采样介绍.mp4
│   │   ├── 5-采样得到中心点.mp4
│   │   ├── 6-组区域划分方法.mp4
│   │   ├── 7-实现group操作得到各中心簇.mp4
│   │   ├── 8-特征提取模块整体流程.mp4
│   │   ├── 9-预测结果输出模块.mp4
│   │   ├── 11-分割任务数据与配置概述.mp4
│   │   ├── 12-分割需要解决的任务概述.mp4
│   │   └── 13-上采样完成分割任务.mp4
│   ├── 5-点云补全PF-Net论文解读
│   │   ├── 1-点云补全要解决的问题.mp4
│   │   ├── 2-基本解决方案概述.mp4
│   │   ├── 3-整体网络概述.mp4
│   │   ├── 4-网络计算流程.mp4
│   │   └── 5-输入与计算结果.mp4
│   ├── 6-点云补全实战解读
│   │   ├── 1-数据与项目配置解读.mp4
│   │   ├── 2-待补全数据准备方法.mp4
│   │   ├── 3-整体框架概述.mp4
│   │   ├── 4-MRE特征提取模块.mp4
│   │   ├── 5-分层预测输出模块.mp4
│   │   ├── 6-补全点云数据.mp4
│   │   └── 7-判别模块.mp4
│   ├── 7-点云配准及其案例实战
│   │   ├── 1-点云配准任务概述.mp4
│   │   ├── 2-配准要完成的目标解读.mp4
│   │   ├── 3-训练数据构建.mp4
│   │   ├── 4-任务基本流程.mp4
│   │   ├── 5-数据源配置方法.mp4
│   │   ├── 6-参数计算模块解读.mp4
│   │   ├── 7-基于模型预测输出参数.mp4
│   │   ├── 8-特征构建方法分析.mp4
│   │   └── 9-任务总结.mp4
│   └── 8-基础补充-对抗生成网络架构原理与实战解析
│       ├── 1-对抗生成网络通俗解释.mp4
│       ├── 2-GAN网络组成.mp4
│       ├── 3-损失函数解释说明.mp4
│       ├── 4-数据读取模块.mp4
│       └── 5-生成与判别网络定义.mp4
├── 14-面向深度学习的无人驾驶实战
│   ├── 1-深度估计算法原理解读
│   │   ├── 1-深度估计效果与应用.mp4
│   │   ├── 2-kitti数据集介绍.mp4
│   │   ├── 3-使用backbone获取层级特征.mp4
│   │   ├── 4-差异特征计算边界信息.mp4
│   │   ├── 5-SPP层的作用.mp4
│   │   ├── 6-空洞卷积与ASPP.mp4
│   │   ├── 7-特征拼接方法分析.mp4
│   │   ├── 8-网络coarse-to-fine过程.mp4
│   │   ├── 9-权重参数预处理.mp4
│   │   └── 10-损失计算.mp4
│   ├── 2-深度估计项目实战
│   │   ├── 1-项目环境配置解读.mp4
│   │   ├── 2-数据与标签定义方法.mp4
│   │   ├── 3-数据集dataloader制作.mp4
│   │   ├── 4-使用backbone进行特征提取.mp4
│   │   ├── 5-计算差异特征.mp4
│   │   ├── 6-权重参数标准化操作.mp4
│   │   ├── 7-网络结构ASPP层.mp4
│   │   ├── 8-特征拼接方法解读.mp4
│   │   ├── 9-输出深度估计结果.mp4
│   │   ├── 10-损失函数通俗解读.mp4
│   │   └── 11-模型DEMO输出结果.mp4
│   ├── 3-车道线检测算法与论文解读
│   │   ├── 1-数据标签与任务分析.mp4
│   │   ├── 2-网络整体框架分析.mp4
│   │   ├── 3-输出结果分析.mp4
│   │   ├── 4-损失函数计算方法.mp4
│   │   └── 5-论文概述分析.mp4
│   ├── 4-基于深度学习的车道线检测项目实战
│   │   ├── 1-车道数据与标签解读.mp4
│   │   ├── 2-项目环境配置演示.mp4
│   │   ├── 3-制作数据集dataloader.mp4
│   │   ├── 4-车道线标签数据处理.mp4
│   │   ├── 5-四条车道线标签位置矩阵.mp4
│   │   ├── 6-grid设置方法.mp4
│   │   ├── 7-完成数据与标签制作.mp4
│   │   ├── 8-算法网络结构解读.mp4
│   │   ├── 9-损失函数计算模块分析.mp4
│   │   ├── 10-车道线规则损失函数限制.mp4
│   │   └── 11-DEMO制作与配置.mp4
│   ├── 5-商汤LoFTR算法解读
│   │   ├── 1-特征匹配的应用场景.mp4
│   │   ├── 2-特征匹配的基本流程分析.mp4
│   │   ├── 3-整体流程梳理分析.mp4
│   │   ├── 4-CrossAttention的作用与效果.mp4
│   │   ├── 5-transformer构建匹配特征.mp4
│   │   ├── 6-粗粒度匹配过程与作用.mp4
│   │   ├── 7-特征图拆解操作.mp4
│   │   ├── 8-细粒度匹配的作用与方法.mp4
│   │   ├── 9-基于期望预测最终位置.mp4
│   │   └── 10-总结分析.mp4
│   ├── 6-局部特征关键点匹配实战
│   │   ├── 1-项目与参数配置解读.mp4
│   │   ├── 2-DEMO效果演示.mp4
│   │   ├── 3-backbone特征提取模块.mp4
│   │   ├── 4-注意力机制的作用与效果分析.mp4
│   │   ├── 5-特征融合模块实现方法.mp4
│   │   ├── 6-cross关系计算方法实例.mp4
│   │   ├── 7-粗粒度匹配过程.mp4
│   │   ├── 8-完成基础匹配模块.mp4
│   │   ├── 9-精细化调整方法与实例.mp4
│   │   ├── 10-得到精细化输出结果.mp4
│   │   └── 11-通过期望计算最终输出.mp4
│   ├── 7-三维重建应用与坐标系基础
│   │   ├── 1-三维重建概述分析.mp4
│   │   ├── 2-三维重建应用领域概述.mp4
│   │   ├── 3-成像方法概述.mp4
│   │   ├── 4-相机坐标系.mp4
│   │   ├── 5-坐标系转换方法解读.mp4
│   │   ├── 6-相机内外参.mp4
│   │   ├── 7-通过内外参数进行坐标变换.mp4
│   │   └── 8-相机标定简介.mp4
│   ├── 8-NeuralRecon算法解读
│   │   ├── 1-任务流程分析.mp4
│   │   ├── 2-基本框架熟悉.mp4
│   │   ├── 3-特征映射方法解读.mp4
│   │   ├── 4-片段融合思想.mp4
│   │   └── 5-整体架构重构方法.mp4
│   ├── 9-NeuralRecon项目环境配置
│   │   ├── 1-数据集下载与配置方法.mp4
│   │   ├── 2-Scannet数据集内容概述.mp4
│   │   ├── 3-TSDF标签生成方法.mp4
│   │   ├── 4-ISSUE的作用.mp4
│   │   └── 5-完成依赖环境配置.mp4
│   ├── 10-NeuralRecon项目源码解读
│   │   ├── 1-Backbone得到特征图.mp4
│   │   ├── 2-初始化体素位置.mp4
│   │   ├── 3-坐标映射方法实现.mp4
│   │   ├── 4-得到体素所对应特征图.mp4
│   │   ├── 5-插值得到对应特征向量.mp4
│   │   ├── 6-得到一阶段输出结果.mp4
│   │   ├── 7-完成三个阶段预测结果.mp4
│   │   └── 8-项目总结.mp4
│   ├── 11-TSDF算法与应用
│   │   ├── 1-TSDF整体概述分析.mp4
│   │   ├── 2-合成过程DEMO演示.mp4
│   │   ├── 3-布局初始化操作.mp4
│   │   ├── 4-TSDF计算基本流程解读.mp4
│   │   ├── 5-坐标转换流程分析.mp4
│   │   └── 6-输出结果融合更新.mp4
│   ├── 12-TSDF实战案例
│   │   ├── 1-环境配置概述.mp4
│   │   ├── 2-初始化与数据读取.mp4
│   │   └── 3-计算得到TSDF输出.mp4
│   ├── 13-轨迹估计算法与论文解读
│   │   ├── 1-数据集与标注信息解读.mp4
│   │   ├── 2-整体三大模块分析.mp4
│   │   ├── 3-特征工程的作用与效果.mp4
│   │   ├── 4-传统方法与现在向量空间对比.mp4
│   │   ├── 5-输入细节分析.mp4
│   │   ├── 6-子图模块构建方法.mp4
│   │   ├── 7-特征融合模块分析.mp4
│   │   └── 8-VectorNet输出层分析.mp4
│   ├── 14-轨迹估计预测实战
│   │   ├── 1-数据与环境配置.mp4
│   │   ├── 2-训练数据准备.mp4
│   │   ├── 3-Agent特征提取方法.mp4
│   │   ├── 4-DataLoader构建图结构.mp4
│   │   └── 5-SubGraph与Attention模型流程.mp4
│   └── 15-特斯拉无人驾驶解读
│       └── 1-特斯拉无人驾驶解读.mp4
├── 15-对比学习与多模态任务实战
│   ├── 1-对比学习算法与实例
│   │   └── 1-对比学习算法与实例.mp4
│   ├── 2-CLIP系列
│   │   └── 1-CLIP系列.mp4
│   ├── 3-多模态3D目标检测算法源码解读
│   │   ├── 1-环境配置与数据集概述.mp4
│   │   ├── 2-数据与标注文件介绍.mp4
│   │   ├── 3-基本流程梳理并进入debug模式.mp4
│   │   ├── 4-数据与图像特征提取模块.mp4
│   │   ├── 5-体素索引位置获取.mp4
│   │   ├── 6-体素特征提取方法解读.mp4
│   │   ├── 7-体素特征计算方法分析.mp4
│   │   ├── 8-全局体素特征提取.mp4
│   │   ├── 9-多模态特征融合.mp4
│   │   ├── 10-3D卷积特征融合.mp4
│   │   └── 11-输出层预测结果.mp4
│   ├── 4-多模态文字识别
│   │   └── 1-多模态文字识别.mp4
│   └── 5-ANINET源码解读
│       ├── 1-数据集与环境概述.mp4
│       ├── 2-配置文件修改方法.mp4
│       ├── 3-Bakbone模块得到特征.mp4
│       ├── 4-视觉Transformer模块的作用.mp4
│       ├── 5-视觉模型中的编码与解码的效果.mp4
│       ├── 6-文本模型中的结构分析.mp4
│       ├── 7-迭代修正模块.mp4
│       └── 8-输出层与损失计算.mp4
├── 16-缺陷检测实战
│   ├── 1-课程介绍
│   │   └── 1-课程介绍.mp4
│   ├── 2-物体检框架YOLO-V4版本算法解读
│   │   ├── 1-V4版本整体概述.mp4
│   │   ├── 2-V4版本贡献解读.mp4
│   │   ├── 3-数据增强策略分析.mp4
│   │   ├── 4-DropBlock与标签平滑方法.mp4
│   │   ├── 5-损失函数遇到的问题.mp4
│   │   ├── 6-CIOU损失函数定义.mp4
│   │   ├── 7-NMS细节改进.mp4
│   │   ├── 8-SPP与CSP网络结构.mp4
│   │   ├── 9-SAM注意力机制模块.mp4
│   │   ├── 10-PAN模块解读.mp4
│   │   └── 11-激活函数与整体架构总结.mp4
│   ├── 3-物体检测框架YOLOV5版本项目配置
│   │   ├── 1-整体项目概述.mp4
│   │   ├── 2-训练自己的数据集方法.mp4
│   │   ├── 3-训练数据参数配置.mp4
│   │   └── 4-测试DEMO演示.mp4
│   ├── 4-物体检测框架YOLOV5项目工程源码解读
│   │   ├── 1-数据源DEBUG流程解读.mp4
│   │   ├── 2-图像数据源配置.mp4
│   │   ├── 3-加载标签数据.mp4
│   │   ├── 4-Mosaic数据增强方法.mp4
│   │   ├── 5-数据四合一方法与流程演示.mp4
│   │   ├── 6-getItem构建batch.mp4
│   │   ├── 7-网络架构图可视化工具安装.mp4
│   │   ├── 8-V5网络配置文件解读.mp4
│   │   ├── 9-Focus模块流程分析.mp4
│   │   ├── 10-完成配置文件解析任务.mp4
│   │   ├── 11-前向传播计算.mp4
│   │   ├── 12-BottleneckCSP层计算方法.mp4
│   │   ├── 13-SPP层计算细节分析.mp4
│   │   ├── 14-Head层流程解读.mp4
│   │   ├── 15-上采样与拼接操作.mp4
│   │   ├── 16-输出结果分析.mp4
│   │   ├── 17-超参数解读.mp4
│   │   ├── 18-命令行参数介绍.mp4
│   │   ├── 19-训练流程解读.mp4
│   │   ├── 20-各种训练策略概述.mp4
│   │   └── 21-模型迭代过程.mp4
│   ├── 5-基于YOLOV5的钢材缺陷检测实战
│   │   ├── 1-任务需求与项目概述.mp4
│   │   ├── 2-数据与标签配置方法.mp4
│   │   ├── 3-标签转换格式脚本制作.mp4
│   │   ├── 4-各版本模型介绍分析.mp4
│   │   ├── 5-项目参数配置.mp4
│   │   ├── 6-缺陷检测模型训练.mp4
│   │   └── 7-输出结果与项目总结.mp4
│   ├── 6-Semi-supervised布料缺陷检测实战
│   │   ├── 1-任务目标与流程概述.mp4
│   │   ├── 2-论文思想与模型分析.mp4
│   │   ├── 3-项目配置解读.mp4
│   │   ├── 4-网络流程分析.mp4
│   │   └── 5-输出结果展示.mp4
│   ├── 7-Opencv图像常⽤处理⽅法实例
│   │   ├── 1-计算机眼中的图像.mp4
│   │   ├── 2-视频的读取与处理.mp4
│   │   ├── 3-ROI区域.mp4
│   │   ├── 4-边界填充.mp4
│   │   ├── 5-数值计算.mp4
│   │   ├── 6-图像阈值.mp4
│   │   ├── 7-图像平滑处理.mp4
│   │   ├── 8-高斯与中值滤波.mp4
│   │   ├── 9-腐蚀操作.mp4
│   │   ├── 10-膨胀操作.mp4
│   │   ├── 11-开运算与闭运算.mp4
│   │   ├── 12-梯度计算.mp4
│   │   └── 13-礼帽与黑帽.mp4
│   ├── 8-Opencv梯度计算与边缘检测实例
│   │   ├── 1-Canny边缘检测流程.mp4
│   │   ├── 2-非极大值抑制.mp4
│   │   ├── 3-边缘检测效果.mp4
│   │   ├── 4-Sobel算子.mp4
│   │   ├── 5-梯度计算方法.mp4
│   │   └── 6-scharr与lapkacian算子.mp4
│   ├── 9-Opencv轮廓检测与直⽅图
│   │   ├── 1-图像金字塔定义.mp4
│   │   ├── 2-金字塔制作方法.mp4
│   │   ├── 3-轮廓检测方法.mp4
│   │   ├── 4-轮廓检测结果.mp4
│   │   ├── 5-轮廓特征与近似.mp4
│   │   ├── 6-模板匹配方法.mp4
│   │   ├── 7-匹配效果展示.mp4
│   │   ├── 8-直方图定义.mp4
│   │   ├── 9-均衡化原理.mp4
│   │   ├── 10-均衡化效果.mp4
│   │   ├── 11-傅里叶概述.mp4
│   │   ├── 12-频域变换结果.mp4
│   │   └── 13-低通与高通滤波.mp4
│   ├── 10-基于Opencv缺陷检测项⽬实战
│   │   ├── 1-任务需求与环境配置.mp4
│   │   ├── 2-数据读取与基本处理.mp4
│   │   ├── 3-缺陷形态学操作.mp4
│   │   ├── 4-整体流程解读.mp4
│   │   └── 5-缺陷检测效果演示.mp4
│   ├── 11-基于视频流⽔线的Opencv缺陷检测项⽬
│   │   ├── 1-数据与任务概述.mp4
│   │   ├── 2-视频数据读取与轮廓检测.mp4
│   │   ├── 3-目标质心计算.mp4
│   │   ├── 4-视频数据遍历方法.mp4
│   │   ├── 5-缺陷区域提取.mp4
│   │   ├── 6-不同类型的缺陷检测方法.mp4
│   │   └── 7-检测效果演示.mp4
│   ├── 12-图像分割deeplab系列算法
│   │   ├── 1-deeplab分割算法概述.mp4
│   │   ├── 2-空洞卷积的作用.mp4
│   │   ├── 3-感受野的意义.mp4
│   │   ├── 4-SPP层的作用.mp4
│   │   ├── 5-ASPP特征融合策略.mp4
│   │   └── 6-deeplabV3Plus版本网络架构.mp4
│   ├── 13-基于deeplabV3+版本进⾏VOC分割实战
│   │   ├── 1-PascalVoc数据集介绍.mp4
│   │   ├── 2-项目参数与数据集读取.mp4
│   │   ├── 3-网络前向传播流程.mp4
│   │   ├── 4-ASPP层特征融合.mp4
│   │   └── 5-分割模型训练.mp4
│   └── 14-Deeplab铁质材料缺陷检测与开源项⽬应⽤流程
│       ├── 1-数据集与任务概述.mp4
│       ├── 2-开源项目应用方法.mp4
│       ├── 3-github与kaggle中需要注意的点.mp4
│       ├── 4-源码的利用方法.mp4
│       ├── 5-数据集制作方法.mp4
│       ├── 6-数据路径配置.mp4
│       ├── 7-训练模型.mp4
│       └── 8-任务总结.mp4
├── 17-行人重识别实战
│   ├── 1-行人重识别原理及其应用
│   │   ├── 1-行人重识别要解决的问题.mp4
│   │   ├── 2-挑战与困难分析.mp4
│   │   ├── 3-评估标准rank1指标.mp4
│   │   ├── 4-map值计算方法.mp4
│   │   ├── 5-triplet损失计算实例.mp4
│   │   └── 6-Hard-Negative方法应用.mp4
│   ├── 2-基于注意力机制的Reld模型论文解读
│   │   ├── 1-论文整体思想及注意力机制的作用解读.mp4
│   │   ├── 2-空间权重值计算流程分析.mp4
│   │   ├── 3-融合空间注意力所需特征.mp4
│   │   └── 4-基于特征图的注意力计算.mp4
│   ├── 3-基于Attention的行人重识别项目实战
│   │   ├── 1-项目环境与数据集配置.mp4
│   │   ├── 2-参数配置与整体架构分析.mp4
│   │   ├── 3-进入debug模式解读网络计算流程.mp4
│   │   ├── 4-获得空间位置点之间的关系.mp4
│   │   ├── 5-组合关系特征图.mp4
│   │   ├── 6-计算得到位置权重值.mp4
│   │   ├── 7-基于特征图的权重计算.mp4
│   │   ├── 8-损失函数计算实例解读.mp4
│   │   └── 9-训练与测试模块演示.mp4
│   ├── 4-AAAI2020顶会算法精讲
│   │   ├── 1-论文整体框架概述.mp4
│   │   ├── 2-局部特征与全局关系计算方法.mp4
│   │   ├── 3-特征分组方法.mp4
│   │   ├── 4-GCP模块特征融合方法.mp4
│   │   ├── 5-oneVsReset方法实例.mp4
│   │   └── 6-损失函数应用位置.mp4
│   ├── 5-项目实战-基于行人局部特征融合的再识别实战
│   │   ├── 1-项目配置与数据集介绍.mp4
│   │   ├── 2-数据源构建方法分析.mp4
│   │   ├── 3-dataloader加载顺序解读.mp4
│   │   ├── 4-debug模式解读.mp4
│   │   ├── 5-网络计算整体流程演示.mp4
│   │   ├── 6-特征序列构建.mp4
│   │   ├── 7-GCP全局特征提取.mp4
│   │   ├── 8-局部特征提取实例.mp4
│   │   ├── 9-特征组合汇总.mp4
│   │   ├── 10-得到所有分组特征结果.mp4
│   │   ├── 11-损失函数与训练过程演示.mp4
│   │   └── 12-测试与验证模块.mp4
│   ├── 6-旷视研究院最新算法解读(基于图模型)
│   │   ├── 1-关键点位置特征构建.mp4
│   │   ├── 2-图卷积与匹配的作用.mp4
│   │   ├── 3-局部特征热度图计算.mp4
│   │   ├── 4-基于图卷积构建人体拓扑关系.mp4
│   │   ├── 5-图卷积模块实现方法.mp4
│   │   ├── 6-图匹配在行人重识别中的作用.mp4
│   │   └── 7-整体算法框架分析.mp4
│   ├── 7-基于拓扑图的行人重识别项目实战
│   │   ├── 1-数据集与环境配置概述.mp4
│   │   ├── 2-局部特征准备方法.mp4
│   │   ├── 3-得到一阶段热度图结果.mp4
│   │   ├── 4-阶段监督训练.mp4
│   │   ├── 5-初始化图卷积模型.mp4
│   │   ├── 6-mask矩阵的作用.mp4
│   │   ├── 7-邻接矩阵学习与更新.mp4
│   │   ├── 8-基于拓扑结构组合关键点特征.mp4
│   │   ├── 9-图匹配模块计算流程.mp4
│   │   └── 10-整体项目总结.mp4
│   └── 8-额外补充:行人搜索源码分析
│       ├── 1-项目概述.mp4
│       ├── 2-项目概述.mp4
│       ├── 3-数据与标签读取模块.mp4
│       ├── 4-通过配置文件读取模型位置.mp4
│       ├── 5-BackBone位置与流程.mp4
│       ├── 6-Neck层操作方法.mp4
│       ├── 7-Head层预测模块.mp4
│       ├── 8-损失函数计算模块.mp4
│       └── 9-总结概述.mp4
├── 18-对抗生成网络实战
│   ├── 1-课程介绍
│   │   └── 1-课程介绍.mp4
│   ├── 2-对抗生成网络架构原理与实战解析
│   │   ├── 1-对抗生成网络通俗解释.mp4
│   │   ├── 2-GAN网络组成.mp4
│   │   ├── 3-损失函数解释说明.mp4
│   │   ├── 4-数据读取模块.mp4
│   │   └── 5-生成与判别网络定义.mp4
│   ├── 3-基于CycleGan开源项目实战图像合成
│   │   ├── 1-CycleGan网络所需数据.mp4
│   │   ├── 2-CycleGan整体网络架构.mp4
│   │   ├── 3-PatchGan判别网络原理.mp4
│   │   ├── 4-Cycle开源项目简介.mp4
│   │   ├── 5-数据读取与预处理操作.mp4
│   │   ├── 6-生成网络模块构造.mp4
│   │   ├── 7-判别网络模块构造.mp4
│   │   ├── 8-损失函数:identity loss计算方法.mp4
│   │   ├── 9-生成与判别损失函数指定.mp4
│   │   └── 10-额外补充:VISDOM可视化配置.mp4
│   ├── 4-stargan论文架构解析
│   │   ├── 1-stargan效果演示分析.mp4
│   │   ├── 2-网络架构整体思路解读.mp4
│   │   ├── 3-建模流程分析.mp4
│   │   ├── 4-V1版本存在的问题及后续改进思路.mp4
│   │   ├── 5-V2版本在整体网络架构.mp4
│   │   ├── 6-编码器训练方法.mp4
│   │   ├── 7-损失函数公式解析.mp4
│   │   └── 8-训练过程分析.mp4
│   ├── 5-stargan项目实战及其源码解读
│   │   ├── 1-测试模块效果与实验分析.mp4
│   │   ├── 2-项目配置与数据源下载.mp4
│   │   ├── 3-测试效果演示.mp4
│   │   ├── 4-项目参数解析.mp4
│   │   ├── 5-生成器模块源码解读.mp4
│   │   ├── 6-所有网络模块构建实例.mp4
│   │   ├── 7-数据读取模块分析.mp4
│   │   ├── 8-判别器损失计算.mp4
│   │   ├── 9-损失计算详细过程.mp4
│   │   └── 10-生成模块损失计算.mp4
│   ├── 6-基于starganvc2的变声器论文原理解读
│   │   ├── 1-论文整体思路与架构解读.mp4
│   │   ├── 2-VCC2016输入数据.mp4
│   │   ├── 3-语音特征提取.mp4
│   │   ├── 4-生成器模型架构分析.mp4
│   │   ├── 5-InstanceNorm的作用解读.mp4
│   │   ├── 6-AdaIn的目的与效果.mp4
│   │   └── 7-判别器模块分析.mp4
│   ├── 7-starganvc2变声器项目实战及其源码解读
│   │   ├── 1-数据与项目文件解读.mp4
│   │   ├── 2-环境配置与工具包安装.mp4
│   │   ├── 3-数据预处理与声音特征提取.mp4
│   │   ├── 4-生成器构造模块解读.mp4
│   │   ├── 5-下采样与上采样操作.mp4
│   │   ├── 6-starganvc2版本标签输入分析.mp4
│   │   ├── 7-生成器前向传播维度变化.mp4
│   │   ├── 8-判别器模块解读.mp4
│   │   ├── 9-论文损失函数.mp4
│   │   ├── 10-源码损失计算流程.mp4
│   │   └── 11-测试模块-生成转换语音.mp4
│   ├── 8-图像超分辨率重构实战
│   │   ├── 1-论文概述.mp4
│   │   ├── 2-网络架构.mp4
│   │   ├── 3-数据与环境配置.mp4
│   │   ├── 4-数据加载与配置.mp4
│   │   ├── 5-生成模块.mp4
│   │   ├── 6-判别模块.mp4
│   │   ├── 7-VGG特征提取网络.mp4
│   │   ├── 8-损失函数与训练.mp4
│   │   └── 9-测试模块.mp4
│   └── 9-基于GAN的图像补全实战
│       ├── 1-论文概述.mp4
│       ├── 2-网络架构.mp4
│       ├── 3-细节设计.mp4
│       ├── 4-论文总结.mp4
│       ├── 5-数据与项目概述.mp4
│       ├── 6-参数基本设计.mp4
│       ├── 7-网络结构配置.mp4
│       ├── 8-网络迭代训练.mp4
│       └── 9-测试模块.mp4
├── 19-强化学习与AI黑科技实例
│   ├── 1-强化学习简介及其应用
│   │   ├── 1-一张图通俗解释强化学习.mp4
│   │   ├── 2-强化学习的指导依据.mp4
│   │   ├── 3-强化学习AI游戏DEMO.mp4
│   │   ├── 4-应用领域简介.mp4
│   │   ├── 5-强化学习工作流程.mp4
│   │   └── 6-计算机眼中的状态与行为.mp4
│   ├── 2-PPO算法与公式推导
│   │   ├── 1-基本情况介绍.mp4
│   │   ├── 2-与环境交互得到所需数据.mp4
│   │   ├── 3-要完成的目标分析.mp4
│   │   ├── 4-策略梯度推导.mp4
│   │   ├── 5-baseline方法.mp4
│   │   ├── 6-OnPolicy与OffPolicy策略.mp4
│   │   ├── 7-importance sampling的作用.mp4
│   │   └── 8-PPO算法整体思路解析.mp4
│   ├── 3-PPO实战-月球登陆器训练实例
│   │   ├── 1-Critic的作用与效果.mp4
│   │   ├── 2-PPO2版本公式解读.mp4
│   │   ├── 3-参数与网络结构定义.mp4
│   │   ├── 4-得到动作结果.mp4
│   │   ├── 5-奖励获得与计算.mp4
│   │   └── 6-参数迭代与更新.mp4
│   ├── 4-Q-learning与DQN算法
│   │   ├── 1-整体任务流程演示.mp4
│   │   ├── 2-探索与action获取.mp4
│   │   ├── 3-计算target值.mp4
│   │   ├── 4-训练与更新.mp4
│   │   ├── 5-算法原理通俗解读.mp4
│   │   ├── 6-目标函数与公式解析.mp4
│   │   ├── 7-Qlearning算法实例解读.mp4
│   │   ├── 8-Q值迭代求解.mp4
│   │   └── 9-DQN简介.mp4
│   ├── 5-DQN改进与应用技巧
│   │   ├── 1-DoubleDqn要解决的问题.mp4
│   │   ├── 2-DuelingDqn改进方法.mp4
│   │   ├── 3-Dueling整体网络架构分析.mp4
│   │   ├── 4-MultiSetp策略.mp4
│   │   └── 5-连续动作处理方法.mp4
│   ├── 6-Actor-Critic算法分析(A3C)
│   │   ├── 1-AC算法回顾与知识点总结.mp4
│   │   ├── 2-优势函数解读与分析.mp4
│   │   ├── 3-计算流程实例.mp4
│   │   ├── 4-A3C整体架构分析.mp4
│   │   └── 5-损失函数整理.mp4
│   ├── 7-用A3C玩转超级马里奥
│   │   ├── 1-整体流程与环境配置.mp4
│   │   ├── 2-启动游戏环境.mp4
│   │   ├── 3-要计算的指标回顾.mp4
│   │   ├── 4-初始化局部模型并加载参数.mp4
│   │   ├── 5-与环境交互得到训练数据.mp4
│   │   └── 6-训练网络模型.mp4
│   ├── 8-GPT系列生成模型
│   │   └── 1-GPT系列.mp4
│   ├── 9-GPT建模与预测流程
│   │   ├── 1-生成模型可以完成的任务概述.mp4
│   │   ├── 2-数据样本生成方法.mp4
│   │   ├── 3-训练所需参数解读.mp4
│   │   ├── 4-模型训练过程.mp4
│   │   └── 5-部署与网页预测展示.mp4
│   ├── 10-CLIP系列
│   │   └── 1-CLIP系列.mp4
│   ├── 11-Diffusion模型解读
│   │   └── 1-Diffusion模型解读.mp4
│   ├── 12-Dalle2及其源码解读
│   │   └── 1-Dalle2源码解读.mp4
│   └── 13-ChatGPT
│       └── 1-ChatGPT.mp4
├── 20-面向医学领域的深度学习实战
│   ├── 1-卷积神经网络原理与参数解读
│   │   ├── 1-卷积神经网络应用领域.mp4
│   │   ├── 2-卷积的作用.mp4
│   │   ├── 3-卷积特征值计算方法.mp4
│   │   ├── 4-得到特征图表示.mp4
│   │   ├── 5-步长与卷积核大小对结果的影响.mp4
│   │   ├── 6-边缘填充方法.mp4
│   │   ├── 7-特征图尺寸计算与参数共享.mp4
│   │   ├── 8-池化层的作用.mp4
│   │   ├── 9-整体网络架构.mp4
│   │   ├── 10-VGG网络架构.mp4
│   │   ├── 11-残差网络Resnet.mp4
│   │   └── 12-感受野的作用.mp4
│   ├── 2-PyTorch框架基本处理操作
│   │   ├── 1-PyTorch实战课程简介.mp4
│   │   ├── 2-PyTorch框架发展趋势简介.mp4
│   │   ├── 3-框架安装方法(CPU与GPU版本).mp4
│   │   ├── 4-PyTorch基本操作简介.mp4
│   │   ├── 5-自动求导机制.mp4
│   │   ├── 6-线性回归DEMO-数据与参数配置.mp4
│   │   ├── 7-线性回归DEMO-训练回归模型.mp4
│   │   ├── 8-补充:常见tensor格式.mp4
│   │   └── 9-补充:Hub模块简介.mp4
│   ├── 3-PyTorch框架必备核心模块解读
│   │   ├── 1-卷积网络参数定义.mp4
│   │   ├── 2-网络流程解读.mp4
│   │   ├── 3-Vision模块功能解读.mp4
│   │   ├── 4-分类任务数据集定义与配置.mp4
│   │   ├── 5-图像增强的作用.mp4
│   │   ├── 6-数据预处理与数据增强模块.mp4
│   │   ├── 7-Batch数据制作.mp4
│   │   ├── 8-迁移学习的目标.mp4
│   │   ├── 9-迁移学习策略.mp4
│   │   ├── 10-加载训练好的网络模型.mp4
│   │   ├── 11-优化器模块配置.mp4
│   │   ├── 12-实现训练模块.mp4
│   │   ├── 13-训练结果与模型保存.mp4
│   │   ├── 14-加载模型对测试数据进行预测.mp4
│   │   ├── 15-额外补充-Resnet论文解读.mp4
│   │   └── 16-额外补充-Resnet网络架构解读.mp4
│   ├── 4-基于Resnet的医学数据集分类实战
│   │   ├── 1-医学疾病数据集介绍.mp4
│   │   ├── 2-Resnet网络架构原理分析.mp4
│   │   ├── 3-dataloader加载数据集.mp4
│   │   ├── 4-Resnet网络前向传播.mp4
│   │   ├── 5-残差网络的shortcut操作.mp4
│   │   ├── 6-特征图升维与降采样操作.mp4
│   │   └── 7-网络整体流程与训练演示.mp4
│   ├── 5-图像分割及其损失函数概述
│   │   ├── 1-语义分割与实例分割概述.mp4
│   │   ├── 2-分割任务中的目标函数定义.mp4
│   │   └── 3-MIOU评估标准.mp4
│   ├── 6-Unet系列算法讲解
│   │   ├── 1-Unet网络编码与解码过程.mp4
│   │   ├── 2-网络计算流程.mp4
│   │   ├── 3-Unet升级版本改进.mp4
│   │   └── 4-后续升级版本介绍.mp4
│   ├── 7-unet医学细胞分割实战
│   │   ├── 1-医学细胞数据集介绍与参数配置.mp4
│   │   ├── 2-数据增强工具.mp4
│   │   ├── 3-Debug模式演示网络计算流程.mp4
│   │   ├── 4-特征融合方法演示.mp4
│   │   ├── 5-迭代完成整个模型计算任务.mp4
│   │   └── 6-模型效果验证.mp4
│   ├── 8-deeplab系列算法
│   │   ├── 1-deeplab分割算法概述.mp4
│   │   ├── 2-空洞卷积的作用.mp4
│   │   ├── 3-感受野的意义.mp4
│   │   ├── 4-SPP层的作用.mp4
│   │   ├── 5-ASPP特征融合策略.mp4
│   │   └── 6-deeplabV3Plus版本网络架构.mp4
│   ├── 9-基于deeplabV3+版本进行VOC分割实战
│   │   ├── 1-PascalVoc数据集介绍.mp4
│   │   ├── 2-项目参数与数据集读取.mp4
│   │   ├── 3-网络前向传播流程.mp4
│   │   ├── 4-ASPP层特征融合.mp4
│   │   └── 5-分割模型训练.mp4
│   ├── 10-基于deeplab的心脏视频数据诊断分析
│   │   ├── 1-数据集与任务概述.mp4
│   │   ├── 2-项目基本配置参数.mp4
│   │   ├── 3-任务流程解读.mp4
│   │   ├── 4-文献报告分析.mp4
│   │   ├── 5-补充:视频数据源特征处理方法概述.mp4
│   │   └── 6-补充:R(2plus1)D处理方法分析.mp4
│   ├── 11-YOLO系列物体检测算法原理解读
│   │   ├── 1-检测任务中阶段的意义.mp4
│   │   ├── 2-不同阶段算法优缺点分析.mp4
│   │   ├── 3-IOU指标计算.mp4
│   │   ├── 4-评估所需参数计算.mp4
│   │   ├── 5-map指标计算.mp4
│   │   ├── 6-YOLO算法整体思路解读.mp4
│   │   ├── 7-检测算法要得到的结果.mp4
│   │   ├── 8-整体网络架构解读.mp4
│   │   ├── 9-位置损失计算.mp4
│   │   ├── 10-置信度误差与优缺点分析.mp4
│   │   ├── 11-V2版本细节升级概述.mp4
│   │   ├── 12-网络结构特点.mp4
│   │   ├── 13-架构细节解读.mp4
│   │   ├── 14-基于聚类来选择先验框尺寸.mp4
│   │   ├── 15-偏移量计算方法.mp4
│   │   ├── 16-坐标映射与还原.mp4
│   │   ├── 17-感受野的作用.mp4
│   │   ├── 18-特征融合改进.mp4
│   │   ├── 19-V3版本改进概述.mp4
│   │   ├── 20-多scale方法改进与特征融合.mp4
│   │   ├── 21-经典变换方法对比分析.mp4
│   │   ├── 22-残差连接方法解读.mp4
│   │   ├── 23-整体网络模型架构分析.mp4
│   │   ├── 24-先验框设计改进.mp4
│   │   ├── 25-sotfmax层改进.mp4
│   │   ├── 26-V4版本整体概述.mp4
│   │   ├── 27-V4版本贡献解读.mp4
│   │   ├── 28-数据增强策略分析.mp4
│   │   ├── 29-DropBlock与标签平滑方法.mp4
│   │   ├── 30-损失函数遇到的问题.mp4
│   │   ├── 31-CIOU损失函数定义.mp4
│   │   ├── 32-NMS细节改进.mp4
│   │   ├── 33-SPP与CSP网络结构.mp4
│   │   ├── 34-SAM注意力机制模块.mp4
│   │   ├── 35-PAN模块解读.mp4
│   │   └── 36-激活函数与整体架构总结.mp4
│   ├── 12-基于YOLO5细胞检测实战
│   │   ├── 1-任务与细胞数据集介绍.mp4
│   │   ├── 2-模型与算法配置参数解读.mp4
│   │   ├── 3-网络训练流程演示.mp4
│   │   ├── 4-效果评估与展示.mp4
│   │   └── 5-细胞检测效果演示.mp4
│   ├── 13-知识图谱原理解读
│   │   ├── 1-知识图谱通俗解读.mp4
│   │   ├── 2-知识图谱在搜索引擎中的应用.mp4
│   │   ├── 3-知识图谱在医疗领域应用实例.mp4
│   │   ├── 4-金融与推荐领域的应用.mp4
│   │   ├── 5-数据获取分析.mp4
│   │   ├── 6-数据关系抽取分析.mp4
│   │   ├── 7-常用NLP技术点分析.mp4
│   │   ├── 8-graph-embedding的作用与效果.mp4
│   │   ├── 9-金融领域图编码实例.mp4
│   │   ├── 10-视觉领域图编码实例.mp4
│   │   └── 11-图谱知识融合与总结分析.mp4
│   ├── 14-Neo4j数据库实战
│   │   ├── 1-Neo4j图数据库介绍.mp4
│   │   ├── 2-Neo4j数据库安装流程演示.mp4
│   │   ├── 3-可视化例子演示.mp4
│   │   ├── 4-创建与删除操作演示.mp4
│   │   └── 5-数据库更改查询操作演示.mp4
│   ├── 15-基于知识图谱的医药问答系统实战
│   │   ├── 1-项目概述与整体架构分析.mp4
│   │   ├── 2-医疗数据介绍及其各字段含义.mp4
│   │   ├── 3-任务流程概述.mp4
│   │   ├── 4-环境配置与所需工具包安装.mp4
│   │   ├── 5-提取数据中的关键字段信息.mp4
│   │   ├── 6-创建关系边.mp4
│   │   ├── 7-打造医疗知识图谱模型.mp4
│   │   ├── 8-加载所有实体数据.mp4
│   │   ├── 9-实体关键词字典制作.mp4
│   │   └── 10-完成对话系统构建.mp4
│   ├── 16-词向量模型与RNN网络架构
│   │   ├── 1-词向量模型通俗解释.mp4
│   │   ├── 2-模型整体框架.mp4
│   │   ├── 3-训练数据构建.mp4
│   │   ├── 4-CBOW与Skip-gram模型.mp4
│   │   ├── 5-负采样方案.mp4
│   │   └── 6-额外补充-RNN网络模型解读.mp4
│   └── 17-医学糖尿病数据命名实体识别
│       ├── 1-数据与任务介绍.mp4
│       ├── 2-整体模型架构.mp4
│       ├── 3-数据-标签-语料库处理.mp4
│       ├── 4-输入样本填充补齐.mp4
│       ├── 5-训练网络模型.mp4
│       └── 6-医疗数据集(糖尿病)实体识别.mp4
├── 21-CV与NLP经典大模型解读
│   ├── 1-课程简介
│   │   └── 1-课程简介.mp4
│   ├── 2-GPT系列算法解读
│   │   ├── 1-GPT系列算法概述.mp4
│   │   ├── 2-GPT三代版本分析.mp4
│   │   ├── 3-GPT初代版本要解决的问题.mp4
│   │   ├── 4-GPT第二代版本训练策略.mp4
│   │   ├── 5-采样策略与多样性.mp4
│   │   ├── 6-GPT3的提示与生成方法.mp4
│   │   ├── 7-应用场景CODEX分析.mp4
│   │   └── 8-DEMO应用演示.mp4
│   ├── 3-GPT2训练与预测部署流程
│   │   ├── 1-生成模型可以完成的任务概述.mp4
│   │   ├── 2-数据样本生成方法.mp4
│   │   ├── 3-训练所需参数解读.mp4
│   │   ├── 4-模型训练过程.mp4
│   │   └── 5-部署与网页预测展示.mp4
│   ├── 4-chatgpt算法解读分析
│   │   ├── 1-chatgpt概述.mp4
│   │   ├── 2-挑战及其与有监督问题差异.mp4
│   │   ├── 3-强化学习登场.mp4
│   │   ├── 4-强化学习的作用效果.mp4
│   │   ├── 5-奖励模型设计方法.mp4
│   │   ├── 6-RLHF训练流程解读.mp4
│   │   └── 7-总结分析.mp4
│   ├── 5-LLM与LORA微调策略解读
│   │   ├── 1-大模型如何做下游任务.mp4
│   │   ├── 2-LLM落地微调分析.mp4
│   │   ├── 3-LLAMA与LORA介绍.mp4
│   │   ├── 4-LORA微调的核心思想.mp4
│   │   └── 5-LORA模型实现细节.mp4
│   ├── 6-LLM下游任务训练自己模型实战
│   │   ├── 1-提示工程的作用.mp4
│   │   ├── 2-基本API调用方法.mp4
│   │   ├── 3-数据文档切分操作.mp4
│   │   ├── 4-样本索引与向量构建.mp4
│   │   └── 5-数据切块方法.mp4
│   ├── 7-视觉大模型SAM
│   │   ├── 1-DEMO效果演示.mp4
│   │   ├── 2-论文解读分析.mp4
│   │   ├── 3-完成的任务分析.mp4
│   │   ├── 4-数据闭环方法.mp4
│   │   ├── 5-预训练模型的作用.mp4
│   │   ├── 6-Decoder的作用与项目源码.mp4
│   │   ├── 7-分割任务模块设计.mp4
│   │   ├── 8-实现细节分析.mp4
│   │   └── 9-总结分析.mp4
│   ├── 8-视觉QA算法与论文解读
│   │   ├── 1-视觉QA要解决的问题.mp4
│   │   ├── 2-论文概述分析.mp4
│   │   ├── 3-实现流程路线图.mp4
│   │   ├── 4-答案关注区域分析.mp4
│   │   └── 5-VQA任务总结.mp4
│   ├── 9-扩散模型diffusion架构算法解读
│   │   ├── 1-扩散模型概述与GAN遇到的问题.mp4
│   │   ├── 2-要完成的任务分析.mp4
│   │   ├── 3-公式原理推导解读.mp4
│   │   ├── 4-分布相关计算操作.mp4
│   │   ├── 5-算法实现细节推导.mp4
│   │   ├── 6-公式推导结果分析.mp4
│   │   ├── 7-细节实现总结.mp4
│   │   ├── 8-论文流程图解读.mp4
│   │   ├── 9-案例流程分析.mp4
│   │   └── 10-基本建模训练效果.mp4
│   ├── 10-openai-dalle2论文解读
│   │   ├── 1-论文基本思想与核心模块分析.mp4
│   │   ├── 2-不同模块对比分析.mp4
│   │   ├── 3-算法核心流程解读.mp4
│   │   └── 4-各模块实现细节讲解.mp4
│   ├── 11-openai-dalle2源码解读
│   │   ├── 1-项目整体流程分析.mp4
│   │   ├── 2-源码实现细节分析.mp4
│   │   ├── 3-源码公式对应论文分析.mp4
│   │   ├── 4-Decoder模块实现细节解读.mp4
│   │   └── 5-源码实现流程总结.mp4
│   ├── 12-自监督任务-对比学习思想
│   │   ├── 1-对比学习要解决的问题分析.mp4
│   │   ├── 2-正负样本构建方法.mp4
│   │   ├── 3-Simclr框架流程分析.mp4
│   │   └── 4-下游任务应用概述.mp4
│   ├── 13-视觉自监督BEIT算法解读
│   │   ├── 1-视觉自监督任务分析.mp4
│   │   ├── 2-任务训练目标分析.mp4
│   │   ├── 3-建模流程分析与效果展示.mp4
│   │   ├── 4-codebook模块的作用.mp4
│   │   └── 5-任务总结分析.mp4
│   ├── 14-视觉自监督任务BEITV2论文解读
│   │   ├── 1-BEITV2版本论文出发点解读.mp4
│   │   ├── 2-自监督任务中两大核心任务分析.mp4
│   │   ├── 3-整体网络架构图分析.mp4
│   │   ├── 4-框架实现细节流程分析.mp4
│   │   └── 5-论文细节模块实现解读.mp4
│   ├── 15-视觉自监督任务BEITV2源码解读
│   │   ├── 1-mmselfup源码实现解读.mp4
│   │   ├── 2-网络结构搭建细节解读.mp4
│   │   └── 3-源码实现流程总结.mp4
│   ├── 16-BEV感知特征空间算法解读
│   │   ├── 1-BEV要解决的问题通俗解读.mp4
│   │   ├── 2-BEV中的3D与4D分析.mp4
│   │   ├── 3-特征融合过程中可能遇到的问题.mp4
│   │   ├── 4-BEV汇总特征方法实例解读.mp4
│   │   ├── 5-DeformableAttention回顾.mp4
│   │   ├── 6-空间注意力模块解读.mp4
│   │   ├── 7-时间模块与拓展补充.mp4
│   │   ├── 8-论文知识点分析.mp4
│   │   ├── 9-核心模块论文分析.mp4
│   │   └── 10-整体架构总结.mp4
│   ├── 17-BEVformer项目源码解读
│   │   ├── 1-环境配置方法解读.mp4
│   │   ├── 2-数据集下载与配置方法.mp4
│   │   ├── 3-特征提取以及BEV空间初始化.mp4
│   │   ├── 4-特征对齐与位置编码初始化.mp4
│   │   ├── 5-Reference初始点构建.mp4
│   │   ├── 6-BEV空间与图像空间位置对应.mp4
│   │   ├── 7-注意力机制模块计算方法.mp4
│   │   ├── 8-BEV空间特征构建.mp4
│   │   ├── 9-Decoder要完成的任务分析.mp4
│   │   ├── 10-获取当前BEV特征.mp4
│   │   ├── 11-Decoder级联校正模块.mp4
│   │   └── 12-损失函数与预测可视化.mp4
│   └── 18-补充-视觉大模型基础-deformableAttention
│       ├── 1-DeformableAttention概述分析.mp4
│       ├── 2-可变形偏移量分析.mp4
│       ├── 3-应用场景分析解读.mp4
│       ├── 4-论文计算公式解读.mp4
│       ├── 5-整体框架流程实例.mp4
│       └── 6-下游任务应用场景.mp4
├── 22-深度学习模型部署与剪枝优化实战
│   ├── 1-AIoT人工智能物联网之认识 jetson nano
│   │   ├── 1- jetson nano 硬件介绍.mp4
│   │   ├── 2-jetson nano 刷机.mp4
│   │   ├── 3- jetson nano 系统安装过程.mp4
│   │   ├── 4-感受nano的GPU算力.mp4
│   │   └── 5-安装使用摄像头csi usb.mp4
│   ├── 2-AIoT人工智能物联网之AI 实战
│   │   ├── 1- jetson-inference 入门.mp4
│   │   ├── 2-docker 的安装使用.mp4
│   │   ├── 3-docker中运行分类模型.mp4
│   │   ├── 4-训练自己的目标检测模型准备.mp4
│   │   ├── 5- 训练出自己目标识别模型a.mp4
│   │   ├── 6-训练出自己目标识别模型b.mp4
│   │   └── 7-转换出onnx模型,并使用.mp4
│   ├── 3-AIoT人工智能物联网之NVIDIA TAO 实用级的训练神器
│   │   ├── 1-NVIDIA TAO介绍和安装.mp4
│   │   ├── 2-NVIDIA TAO数据准备和环境设置.mp4
│   │   ├── 3-NVIDIA TAO数据转换.mp4
│   │   ├── 4-NVIDIA TAO预训练模型和训练a.mp4
│   │   ├── 5-NVIDIA TAO预训练模型和训练b.mp4
│   │   ├── 6-NVIDIA TAO预训练模型和训练c..mp4
│   │   └── 7-TAO 剪枝在训练推理验证.mp4
│   ├── 4- AIoT人工智能物联网之deepstream
│   │   ├── 1-deepstream 介绍安装.mp4
│   │   ├── 2-deepstream HelloWorld.mp4
│   │   ├── 3-GStreamer RTP和RTSP1.mp4
│   │   ├── 4-GStreamer RTP和RTSP2.mp4
│   │   ├── 5-python实现RTP和RTSP.mp4
│   │   ├── 6-deepstream推理.mp4
│   │   └── 7-deepstream集成yolov4.mp4
│   ├── 6-pyTorch框架部署实践
│   │   ├── 1-所需基本环境配置.mp4
│   │   ├── 2-模型加载与数据预处理.mp4
│   │   ├── 3-接收与预测模块实现.mp4
│   │   ├── 4-效果实例演示.mp4
│   │   └── 5-课程简介.mp4
│   ├── 7-YOLO-V3物体检测部署实例
│   │   ├── 1-项目所需配置文件介绍.mp4
│   │   ├── 2-加载参数与模型权重.mp4
│   │   ├── 3-数据预处理.mp4
│   │   └── 4-返回线性预测结果.mp4
│   ├── 8-docker实例演示
│   │   ├── 1-docker简介.mp4
│   │   ├── 2-docker安装与配置.mp4
│   │   ├── 3-阿里云镜像配置.mp4
│   │   ├── 4-基于docker配置pytorch环境.mp4
│   │   ├── 5-安装演示环境所需依赖.mp4
│   │   ├── 6-复制所需配置到容器中.mp4
│   │   └── 7-上传与下载配置好的项目.mp4
│   ├── 9-tensorflow-serving实战
│   │   ├── 1-tf-serving项目获取与配置.mp4
│   │   ├── 2-加载并启动模型服务.mp4
│   │   ├── 3-测试模型部署效果.mp4
│   │   ├── 4-fashion数据集获取.mp4
│   │   └── 5-加载fashion模型启动服务.mp4
│   ├── 10-模型剪枝-Network Slimming算法分析
│   │   ├── 1-论文算法核心框架概述.mp4
│   │   ├── 2-BatchNorm要解决的问题.mp4
│   │   ├── 3-BN的本质作用.mp4
│   │   ├── 4-额外的训练参数解读.mp4
│   │   └── 5-稀疏化原理与效果.mp4
│   ├── 11-模型剪枝-Network Slimming实战解读
│   │   ├── 1-整体案例流程解读.mp4
│   │   ├── 2-加入L1正则化来进行更新.mp4
│   │   ├── 3-剪枝模块介绍.mp4
│   │   ├── 4-筛选需要的特征图.mp4
│   │   ├── 5-剪枝后模型参数赋值.mp4
│   │   └── 6-微调完成剪枝模型.mp4
│   └── 12-Mobilenet三代网络模型架构
│       ├── 1-模型剪枝分析.mp4
│       ├── 2-常见剪枝方法介绍.mp4
│       ├── 3-mobilenet简介.mp4
│       ├── 4-经典卷积计算量与参数量分析.mp4
│       ├── 5-深度可分离卷积的作用与效果.mp4
│       ├── 6-参数与计算量的比较.mp4
│       ├── 7-V1版本效果分析.mp4
│       ├── 8-V2版本改进以及Relu激活函数的问题.mp4
│       ├── 9-倒残差结构的作用.mp4
│       ├── 10-V2整体架构与效果分析.mp4
│       ├── 11-V3版本网络架构分析.mp4
│       ├── 12-SE模块作用与效果解读.mp4
│       └── 13-代码实现mobilenetV3网络架构.mp4
├── 23-自然语言处理经典案例实战
│   ├── 1-NLP常用工具包实战
│   │   ├── 1-Python字符串处理.mp4
│   │   ├── 2-正则表达式基本语法.mp4
│   │   ├── 3-正则常用符号.mp4
│   │   ├── 4-常用函数介绍.mp4
│   │   ├── 5-NLTK工具包简介.mp4
│   │   ├── 6-停用词过滤.mp4
│   │   ├── 7-词性标注.mp4
│   │   ├── 8-数据清洗实例.mp4
│   │   ├── 9-Spacy工具包.mp4
│   │   ├── 10-名字实体匹配.mp4
│   │   ├── 11-恐怖袭击分析.mp4
│   │   ├── 12-统计分析结果.mp4
│   │   ├── 13-结巴分词器.mp4
│   │   └── 14-词云展示.mp4
│   ├── 2-商品信息可视化与文本分析
│   │   ├── 1-在线商城商品数据信息概述.mp4
│   │   ├── 2-商品类别划分方式.mp4
│   │   ├── 3-商品类别可视化展示.mp4
│   │   ├── 4-商品描述长度对价格的影响分析.mp4
│   │   ├── 5-关键词的词云可视化展示.mp4
│   │   ├── 6-基于tf-idf提取关键词信息.mp4
│   │   ├── 7-通过降维进行可视化展示.mp4
│   │   └── 8-聚类分析与主题模型展示.mp4
│   ├── 3-贝叶斯算法
│   │   ├── 1-贝叶斯算法概述.mp4
│   │   ├── 2-贝叶斯推导实例.mp4
│   │   ├── 3-贝叶斯拼写纠错实例.mp4
│   │   ├── 4-垃圾邮件过滤实例.mp4
│   │   └── 5-贝叶斯实现拼写检查器.mp4
│   ├── 4-新闻分类任务实战
│   │   ├── 1-文本分析与关键词提取.mp4
│   │   ├── 2-相似度计算.mp4
│   │   ├── 3-新闻数据与任务简介.mp4
│   │   ├── 4-TF-IDF关键词提取.mp4
│   │   ├── 5-LDA建模.mp4
│   │   └── 6-基于贝叶斯算法进行新闻分类.mp4
│   ├── 5-HMM隐马尔科夫模型
│   │   ├── 1-马尔科夫模型.mp4
│   │   ├── 2-隐马尔科夫模型基本出发点.mp4
│   │   ├── 3-组成与要解决的问题.mp4
│   │   ├── 4-暴力求解方法.mp4
│   │   ├── 5-复杂度计算.mp4
│   │   ├── 6-前向算法.mp4
│   │   ├── 7-前向算法求解实例.mp4
│   │   ├── 8-Baum-Welch算法.mp4
│   │   ├── 9-参数求解.mp4
│   │   └── 10-维特比算法.mp4
│   ├── 6-HMM工具包实战
│   │   ├── 1-hmmlearn工具包.mp4
│   │   ├── 2-工具包使用方法.mp4
│   │   ├── 3-中文分词任务.mp4
│   │   └── 4-实现中文分词.mp4
│   ├── 7-语言模型
│   │   ├── 1-开篇.mp4
│   │   ├── 2-语言模型.mp4
│   │   ├── 3-N-gram模型.mp4
│   │   ├── 4-词向量.mp4
│   │   ├── 5-神经网络模型.mp4
│   │   ├── 6-Hierarchical Softmax.mp4
│   │   ├── 7-CBOW模型实例.mp4
│   │   ├── 8-CBOW求解目标.mp4
│   │   ├── 9-锑度上升求解.mp4
│   │   └── 10-负采样模型.mp4
│   ├── 8-使用Gemsim构建词向量
│   │   ├── 1-使用Gensim库构造词向量.mp4
│   │   ├── 2-维基百科中文数据处理.mp4
│   │   ├── 3-Gensim构造word2vec模型.mp4
│   │   └── 4-测试模型相似度结果.mp4
│   ├── 9-基于word2vec的分类任务
│   │   ├── 1-影评情感分类.mp4
│   │   ├── 2-基于词袋模型训练分类器.mp4
│   │   ├── 3-准备word2vec输入数据.mp4
│   │   └── 4-使用gensim构建word2vec词向量(新).mp4
│   ├── 10-NLP-文本特征方法对比
│   │   ├── 1-任务概述.mp4
│   │   ├── 2-词袋模型.mp4
│   │   ├── 3-词袋模型分析.mp4
│   │   ├── 4-TFIDF模型.mp4
│   │   ├── 5-word2vec词向量模型.mp4
│   │   └── 6-深度学习模型.mp4
│   ├── 11-NLP-相似度模型
│   │   ├── 1-任务概述.mp4
│   │   ├── 2-数据展示.mp4
│   │   ├── 3-正负样本制作.mp4
│   │   ├── 4-数据预处理.mp4
│   │   ├── 5-网络模型定义.mp4
│   │   ├── 6-基于字符的训练.mp4
│   │   └── 7-基于句子的相似度训练.mp4
│   ├── 12-LSTM情感分析
│   │   ├── 1-RNN网络架构.mp4
│   │   ├── 2-LSTM网络架构.mp4
│   │   ├── 3-案例:使用LSTM进行情感分类.mp4
│   │   ├── 4-情感数据集处理.mp4
│   │   └── 5-基于word2vec的LSTM模型.mp4
│   ├── 13-机器人写唐诗
│   │   ├── 1-任务概述与环境配置.mp4
│   │   ├── 2-参数配置.mp4
│   │   ├── 3-数据预处理模块.mp4
│   │   ├── 4-batch数据制作.mp4
│   │   ├── 5-RNN模型定义.mp4
│   │   ├── 6-完成训练模块.mp4
│   │   ├── 7-训练唐诗生成模型.mp4
│   │   └── 8-测试唐诗生成效果.mp4
│   └── 14-对话机器人
│       ├── 1-效果演示.mp4
│       ├── 2-参数配置与数据加载.mp4
│       ├── 3-数据处理.mp4
│       ├── 4-词向量与投影.mp4
│       ├── 5-seq网络.mp4
│       └── 6-网络训练.mp4
├── 24-自然语言处理必备神器Huggingface系列实战
│   ├── 1-Huggingface与NLP介绍解读
│   │   └── 1-Huggingface与NLP介绍解读.mp4
│   ├── 2-Transformer工具包基本操作实例解读
│   │   ├── 1-工具包与任务整体介绍.mp4
│   │   ├── 2-NLP任务常规流程分析.mp4
│   │   ├── 3-文本切分方法实例解读.mp4
│   │   ├── 4-AttentionMask配套使用方法.mp4
│   │   ├── 5-数据集与模型.mp4
│   │   ├── 6-数据Dataloader封装.mp4
│   │   ├── 7-模型训练所需配置参数.mp4
│   │   └── 8-模型训练DEMO.mp4
│   ├── 3-transformer原理解读
│   │   └── 1-transformer原理解读.mp4
│   ├── 4-BERT系列算法解读
│   │   ├── 1-BERT模型训练方法解读.mp4
│   │   ├── 2-ALBERT基本定义.mp4
│   │   ├── 3-ALBERT中的简化方法解读.mp4
│   │   ├── 4-RoBerta模型训练方法解读.mp4
│   │   └── 5-DistilBert模型解读.mp4
│   ├── 5-文本标注工具与NER实例
│   │   ├── 1-文本标注工具Doccano配置方法.mp4
│   │   ├── 2-命名实体识别任务标注方法实例.mp4
│   │   ├── 3-标注导出与BIO处理.mp4
│   │   ├── 4-标签处理并完成对齐操作.mp4
│   │   ├── 5-预训练模型加载与参数配置.mp4
│   │   └── 6-模型训练与输出结果预测.mp4
│   ├── 6-文本预训练模型构建实例
│   │   ├── 1-预训练模型效果分析.mp4
│   │   ├── 2-文本数据截断处理.mp4
│   │   └── 3-预训练模型自定义训练.mp4
│   ├── 7-GPT系列算法
│   │   ├── 1-GPT系列算法概述.mp4
│   │   ├── 2-GPT三代版本分析.mp4
│   │   ├── 3-GPT初代版本要解决的问题.mp4
│   │   ├── 4-GPT第二代版本训练策略.mp4
│   │   ├── 5-采样策略与多样性.mp4
│   │   ├── 6-GPT3的提示与生成方法.mp4
│   │   ├── 7-应用场景CODEX分析.mp4
│   │   └── 8-DEMO应用演示.mp4
│   ├── 8-GPT训练与预测部署流程
│   │   ├── 1-生成模型可以完成的任务概述.mp4
│   │   ├── 2-数据样本生成方法.mp4
│   │   ├── 3-训练所需参数解读.mp4
│   │   ├── 4-模型训练过程.mp4
│   │   └── 5-部署与网页预测展示.mp4
│   ├── 9-文本摘要建模
│   │   ├── 1-中文商城评价数据处理方法.mp4
│   │   ├── 2-模型训练与测试结果.mp4
│   │   ├── 3-文本摘要数据标注方法.mp4
│   │   └── 4-训练自己标注的数据并测试.mp4
│   ├── 10-图谱知识抽取实战
│   │   ├── 1-应用场景概述分析.mp4
│   │   ├── 2-数据标注格式样例分析.mp4
│   │   ├── 3-数据处理与读取模块.mp4
│   │   ├── 4-实体抽取模块分析.mp4
│   │   ├── 5-标签与数据结构定义方法.mp4
│   │   ├── 6-模型构建与计算流程.mp4
│   │   ├── 7-网络模型前向计算方法.mp4
│   │   └── 8-关系抽取模型训练.mp4
│   └── 11-补充Huggingface数据集制作方法实例
│       ├── 1-数据结构分析.mp4
│       ├── 2-Huggingface中的预处理实例.mp4
│       └── 3-数据处理基本流程.mp4
├── 25-时间序列预测
│   ├── 1-Informer原理解读
│   │   ├── 1-时间序列预测要完成的任务.mp4
│   │   ├── 2-常用模块分析.mp4
│   │   ├── 3-论文要解决的问题分析.mp4
│   │   ├── 4-Query采样方法解读.mp4
│   │   ├── 5-probAttention计算流程.mp4
│   │   ├── 6-编码器全部计算流程.mp4
│   │   └── 7-解码器流程分析.mp4
│   ├── 2-Informer源码解读
│   │   ├── 1-项目使用说明.mp4
│   │   ├── 2-数据集解读.mp4
│   │   ├── 3-模型训练所需参数解读.mp4
│   │   ├── 4-数据集构建与读取方式.mp4
│   │   ├── 5-数据处理相关模块.mp4
│   │   ├── 6-时间相关特征提取方法.mp4
│   │   ├── 7-dataloader构建实例.mp4
│   │   ├── 8-整体架构分析.mp4
│   │   ├── 9-编码器模块实现.mp4
│   │   ├── 10-核心采样计算方法.mp4
│   │   ├── 11-完成注意力机制计算模块.mp4
│   │   ├── 12-平均向量的作用.mp4
│   │   └── 13-解码器预测输出.mp4
│   └── 3-Timesnet时序预测
│       ├── 1-时序预测故事背景.mp4
│       ├── 2-论文核心思想解读.mp4
│       ├── 3-时序特征周期拆解.mp4
│       ├── 4-计算公式流程拆解.mp4
│       ├── 5-全部计算流程解读.mp4
│       ├── 6-周期间特征分析.mp4
│       ├── 7-源码流程解读.mp4
│       └── 8-傅里叶变换流程.mp4
├── 26-自然语言处理通用框架-BERT实战
│   ├── 1-自然语言处理通用框架BERT原理解读
│   │   ├── 1-BERT课程简介.mp4
│   │   ├── 2-BERT任务目标概述.mp4
│   │   ├── 3-传统解决方案遇到的问题.mp4
│   │   ├── 4-注意力机制的作用.mp4
│   │   ├── 5-self-attention计算方法.mp4
│   │   ├── 6-特征分配与softmax机制.mp4
│   │   ├── 7-Multi-head的作用.mp4
│   │   ├── 8-位置编码与多层堆叠.mp4
│   │   ├── 9-transformer整体架构梳理.mp4
│   │   ├── 10-BERT模型训练方法.mp4
│   │   └── 11-训练实例.mp4
│   ├── 2-谷歌开源项目BERT源码解读与应用实例
│   │   ├── 1-BERT开源项目简介.mp4
│   │   ├── 2-项目参数配置.mp4
│   │   ├── 3-数据读取模块.mp4
│   │   ├── 4-数据预处理模块.mp4
│   │   ├── 5-tfrecord数据源制作.mp4
│   │   ├── 6-Embedding层的作用.mp4
│   │   ├── 7-加入额外编码特征.mp4
│   │   ├── 8-加入位置编码特征.mp4
│   │   ├── 9-mask机制的作用.mp4
│   │   ├── 10-构建QKV矩阵.mp4
│   │   ├── 11-完成Transformer模块构建.mp4
│   │   └── 12-训练BERT模型.mp4
│   ├── 3-项目实战-基于BERT的中文情感分析实战
│   │   ├── 1-中文分类数据与任务概述.mp4
│   │   ├── 2-读取处理自己的数据集.mp4
│   │   └── 3-训练BERT中文分类模型.mp4
│   ├── 4-项目实战-基于BERT的中文命名实体识别识别实战
│   │   ├── 1-命名实体识别数据分析与任务目标.mp4
│   │   ├── 2-NER标注数据处理与读取.mp4
│   │   └── 3-构建BERT与CRF模型.mp4
│   ├── 5-必备基础知识点-woed2vec模型通俗解读
│   │   ├── 1-词向量模型通俗解释.mp4
│   │   ├── 2-模型整体框架.mp4
│   │   ├── 3-训练数据构建.mp4
│   │   ├── 4-CBOW与Skip-gram模型.mp4
│   │   └── 5-负采样方案.mp4
│   ├── 6-必备基础-掌握Tensorflow如何实现word2vec模型
│   │   ├── 1-数据与任务流程.mp4
│   │   ├── 2-数据清洗.mp4
│   │   ├── 3-batch数据制作.mp4
│   │   ├── 4-网络训练.mp4
│   │   └── 5-可视化展示.mp4
│   ├── 7-必备基础知识点-RNN网络架构与情感分析应用实例
│   │   ├── 1-RNN网络模型解读.mp4
│   │   ├── 2-NLP应用领域与任务简介.mp4
│   │   ├── 3-项目流程解读.mp4
│   │   ├── 4-加载词向量特征.mp4
│   │   ├── 5-正负样本数据读取.mp4
│   │   ├── 6-构建LSTM网络模型.mp4
│   │   ├── 7-训练与测试效果.mp4
│   │   └── 8-LSTM情感分析.mp4
│   └── 8-医学糖尿病数据命名实体识别
│       ├── 1-数据与任务介绍.mp4
│       ├── 2-整体模型架构.mp4
│       ├── 3-数据-标签-语料库处理.mp4
│       ├── 4-训练网络模型.mp4
│       ├── 5-医疗数据集(糖尿病)实体识别.mp4
│       └── 6-输入样本填充补齐.mp4
├── 27-知识图谱实战系列
│   ├── 1-知识图谱介绍及其应用领域分析
│   │   ├── 1-知识图谱通俗解读.mp4
│   │   ├── 2-知识图谱在搜索引擎中的应用.mp4
│   │   ├── 3-知识图谱在医疗领域应用实例.mp4
│   │   ├── 4-金融与推荐领域的应用.mp4
│   │   └── 5-数据获取分析.mp4
│   ├── 2-知识图谱涉及技术点分析
│   │   ├── 1-数据关系抽取分析.mp4
│   │   ├── 2-常用NLP技术点分析.mp4
│   │   ├── 3-graph-embedding的作用与效果.mp4
│   │   ├── 4-金融领域图编码实例.mp4
│   │   ├── 5-视觉领域图编码实例.mp4
│   │   └── 6-图谱知识融合与总结分析.mp4
│   ├── 3-Neo4j数据库实战
│   │   ├── 1-Neo4j图数据库介绍.mp4
│   │   ├── 2-Neo4j数据库安装流程演示.mp4
│   │   ├── 3-可视化例子演示.mp4
│   │   ├── 4-创建与删除操作演示.mp4
│   │   └── 5-数据库更改查询操作演示.mp4
│   ├── 4-使用python操作neo4j实例
│   │   ├── 1-使用Py2neo建立连接.mp4
│   │   ├── 2-提取所需的指标信息.mp4
│   │   ├── 3-在图中创建实体.mp4
│   │   └── 4-根据给定实体创建关系.mp4
│   ├── 5-基于知识图谱的医药问答系统实战
│   │   ├── 1-项目概述与整体架构分析.mp4
│   │   ├── 2-医疗数据介绍及其各字段含义.mp4
│   │   ├── 3-任务流程概述.mp4
│   │   ├── 4-环境配置与所需工具包安装.mp4
│   │   ├── 5-提取数据中的关键字段信息.mp4
│   │   ├── 6-创建关系边.mp4
│   │   ├── 7-打造医疗知识图谱模型.mp4
│   │   ├── 8-加载所有实体数据.mp4
│   │   ├── 9-实体关键词字典制作.mp4
│   │   └── 10-完成对话系统构建.mp4
│   ├── 6-文本关系抽取实践
│   │   ├── 1-关系抽取要完成的任务演示与分析.mp4
│   │   ├── 2-LTP工具包概述介绍.mp4
│   │   ├── 3-pyltp安装与流程演示.mp4
│   │   ├── 4-得到分词与词性标注结果.mp4
│   │   ├── 5-依存句法概述.mp4
│   │   ├── 6-句法分析结果整理.mp4
│   │   ├── 7-语义角色构建与分析.mp4
│   │   └── 8-设计规则完成关系抽取.mp4
│   ├── 7-金融平台风控模型实践
│   │   ├── 1-竞赛任务目标.mp4
│   │   ├── 2-图模型信息提取.mp4
│   │   ├── 3-节点权重特征提取(PageRank).mp4
│   │   ├── 4-deepwalk构建图顶点特征.mp4
│   │   ├── 5-各项统计特征.mp4
│   │   ├── 6-app安装特征.mp4
│   │   └── 7-图中联系人特征.mp4
│   └── 8-医学糖尿病数据命名实体识别
│       ├── 1-数据与任务介绍.mp4
│       ├── 2-整体模型架构.mp4
│       ├── 3-数据-标签-语料库处理.mp4
│       ├── 4-输入样本填充补齐.mp4
│       ├── 5-训练网络模型.mp4
│       └── 6-医疗数据集(糖尿病)实体识别.mp4
├── 28-语音识别实战系列
│   ├── 1-seq2seq序列网络模型
│   │   ├── 1-序列网络模型概述分析.mp4
│   │   ├── 2-工作原理概述.mp4
│   │   ├── 3-注意力机制的作用.mp4
│   │   ├── 4-加入attention的序列模型整体架构.mp4
│   │   ├── 5-TeacherForcing的作用与训练策略.mp4
│   │   └── 6-额外补充-RNN网络模型解读.mp4
│   ├── 2-LAS模型语音识别实战
│   │   ├── 1-数据源与环境配置.mp4
│   │   ├── 2-语料表制作方法.mp4
│   │   ├── 3-制作json标注数据.mp4
│   │   ├── 4-声音数据处理模块解读.mp4
│   │   ├── 5-Pack与Pad操作解析.mp4
│   │   ├── 6-编码器模块整体流程.mp4
│   │   ├── 7-加入注意力机制.mp4
│   │   ├── 8-计算得到每个输出的attention得分.mp4
│   │   └── 9-解码器与训练过程演示.mp4
│   ├── 3-starganvc2变声器论文原理解读
│   │   ├── 1-论文整体思路与架构解读.mp4
│   │   ├── 2-VCC2016输入数据.mp4
│   │   ├── 3-语音特征提取.mp4
│   │   ├── 4-生成器模型架构分析.mp4
│   │   ├── 5-InstanceNorm的作用解读.mp4
│   │   ├── 6-AdaIn的目的与效果.mp4
│   │   └── 7-判别器模块分析.mp4
│   ├── 4-staeganvc2变声器源码实战
│   │   ├── 1-数据与项目文件解读.mp4
│   │   ├── 2-环境配置与工具包安装.mp4
│   │   ├── 3-数据预处理与声音特征提取.mp4
│   │   ├── 4-生成器构造模块解读.mp4
│   │   ├── 5-下采样与上采样操作.mp4
│   │   ├── 6-starganvc2版本标签输入分析.mp4
│   │   ├── 7-生成器前向传播维度变化.mp4
│   │   ├── 8-判别器模块解读.mp4
│   │   ├── 9-论文损失函数.mp4
│   │   ├── 10-源码损失计算流程.mp4
│   │   └── 11-测试模块-生成转换语音.mp4
│   ├── 5-语音分离ConvTasnet模型
│   │   ├── 1-语音分离任务分析.mp4
│   │   ├── 2-经典语音分离模型概述.mp4
│   │   ├── 3-DeepClustering论文解读.mp4
│   │   ├── 4-TasNet编码器结构分析.mp4
│   │   ├── 5-DW卷积的作用与效果.mp4
│   │   └── 6-基于Mask得到分离结果.mp4
│   ├── 6-ConvTasnet语音分离实战
│   │   ├── 1-数据准备与环境配置.mp4
│   │   ├── 2-训练任务所需参数介绍.mp4
│   │   ├── 3-DataLoader定义.mp4
│   │   ├── 4-采样数据特征编码.mp4
│   │   ├── 5-编码器特征提取.mp4
│   │   ├── 6-构建更大的感受区域.mp4
│   │   ├── 7-解码得到分离后的语音.mp4
│   │   └── 8-测试模块所需参数.mp4
│   └── 7-语音合成tacotron最新版实战
│       ├── 1-语音合成项目所需环境配置.mp4
│       ├── 2-所需数据集介绍.mp4
│       ├── 3-路径配置与整体流程解读.mp4
│       ├── 4-Dataloader构建数据与标签.mp4
│       ├── 5-编码层要完成的任务.mp4
│       ├── 6-得到编码特征向量.mp4
│       ├── 7-解码器输入准备.mp4
│       ├── 8-解码器流程梳理.mp4
│       ├── 9-注意力机制应用方法.mp4
│       ├── 10-得到加权的编码向量.mp4
│       ├── 11-模型输出结果.mp4
│       └── 12-损失函数与预测.mp4
├── 29-推荐系统实战系列
│   ├── 1-推荐系统介绍及其应用
│   │   ├── 1-1-推荐系统通俗解读.mp4
│   │   ├── 2-2-推荐系统发展简介.mp4
│   │   ├── 3-3-应用领域与多方位评估指标.mp4
│   │   ├── 4-4-任务流程与挑战概述.mp4
│   │   ├── 5-5-常用技术点分析.mp4
│   │   └── 6-6-与深度学习的结合.mp4
│   ├── 2-协同过滤与矩阵分解
│   │   ├── 1-1-协同过滤与矩阵分解简介.mp4
│   │   ├── 2-2-基于用户与商品的协同过滤.mp4
│   │   ├── 3-3-相似度计算与推荐实例.mp4
│   │   ├── 4-4-矩阵分解的目的与效果.mp4
│   │   ├── 5-5-矩阵分解中的隐向量.mp4
│   │   ├── 6-6-目标函数简介.mp4
│   │   ├── 7-7-隐式情况分析.mp4
│   │   └── 8-8-Embedding的作用.mp4
│   ├── 3-音乐推荐系统实战
│   │   ├── 1-1-音乐推荐任务概述.mp4
│   │   ├── 2-2-数据集整合.mp4
│   │   ├── 3-3-基于物品的协同过滤.mp4
│   │   └── 6-6-基于矩阵分解的音乐推荐.mp4
│   ├── 4-知识图谱与Neo4j数据库实例
│   │   ├── 1-1-知识图谱通俗解读.mp4
│   │   ├── 2-2-知识图谱在搜索引擎中的应用.mp4
│   │   ├── 4-4-金融与推荐领域的应用.mp4
│   │   ├── 5-5-数据获取分析.mp4
│   │   ├── 6-1-Neo4j图数据库介绍.mp4
│   │   ├── 8-3-可视化例子演示.mp4
│   │   ├── 9-4-创建与删除操作演示.mp4
│   │   └── 10-5-数据库更改查询操作演示.mp4
│   ├── 5-基于知识图谱的电影推荐实战
│   │   ├── 1-1-知识图谱推荐系统效果演示.mp4
│   │   ├── 3-3-图谱需求与任务流程解读.mp4
│   │   ├── 6-6-图谱查询与匹配操作.mp4
│   │   └── 7-7-相似度计算与推荐引擎构建.mp4
│   ├── 6-点击率估计FM与DeepFM算法
│   │   ├── 1-1-CTR估计及其经典方法概述.mp4
│   │   ├── 2-2-高维特征带来的问题.mp4
│   │   ├── 3-3-二项式特征的作用与挑战.mp4
│   │   ├── 4-4-二阶公式推导与化简.mp4
│   │   ├── 5-5-FM算法解析.mp4
│   │   ├── 6-6-DeepFm整体架构解读.mp4
│   │   ├── 7-7-输入层所需数据样例.mp4
│   │   └── 8-8-Embedding层的作用与总结.mp4
│   ├── 7-DeepFM算法实战
│   │   ├── 1-1-数据集介绍与环境配置.mp4
│   │   ├── 2-2-广告点击数据预处理实例.mp4
│   │   ├── 3-3-数据处理模块Embedding层.mp4
│   │   ├── 4-4-Index与Value数据制作.mp4
│   │   ├── 5-5-一阶权重参数设计.mp4
│   │   ├── 6-6-二阶特征构建方法.mp4
│   │   ├── 7-7-特征组合方法实例分析.mp4
│   │   ├── 8-8-完成FM模块计算.mp4
│   │   └── 9-9-DNN模块与训练过程.mp4
│   ├── 8-推荐系统常用工具包演示
│   │   ├── 1-1-环境配置与数据集介绍.mp4
│   │   ├── 2-2-电影数据集预处理分析.mp4
│   │   ├── 3-3-surprise工具包基本使用.mp4
│   │   ├── 4-4-模型测试集结果.mp4
│   │   └── 5-5-评估指标概述.mp4
│   ├── 9-基于文本数据的推荐实例
│   │   ├── 1-1-数据与环境配置介绍.mp4
│   │   ├── 2-2-数据科学相关数据介绍.mp4
│   │   ├── 3-3-文本数据预处理.mp4
│   │   ├── 4-4-TFIDF构建特征矩阵.mp4
│   │   ├── 5-5-矩阵分解演示.mp4
│   │   ├── 6-6-LDA主题模型效果演示.mp4
│   │   └── 7-7-推荐结果分析.mp4
│   ├── 10-基本统计分析的电影推荐
│   │   ├── 1-1-电影数据与环境配置.mp4
│   │   ├── 2-2-数据与关键词信息展示.mp4
│   │   ├── 3-3-关键词云与直方图展示.mp4
│   │   ├── 4-4-特征可视化.mp4
│   │   ├── 5-5-数据清洗概述.mp4
│   │   ├── 6-6-缺失值填充方法.mp4
│   │   ├── 7-7-推荐引擎构造.mp4
│   │   ├── 8-8-数据特征构造.mp4
│   │   └── 9-9-得出推荐结果.mp4
│   └── 11-补充-基于相似度的酒店推荐系统
│       ├── 1-1-酒店数据与任务介绍.mp4
│       ├── 2-2-文本词频统计.mp4
│       ├── 3-3-ngram结果可视化展示.mp4
│       ├── 4-4-文本清洗.mp4
│       ├── 5-5-相似度计算.mp4
│       └── 6-6-得出推荐结果.mp4
├── 30-论文创新点常用方法及其应用实例
│   └── 1-通用创新点
│       ├── 1-ACMIX(卷积与注意力融合).mp4
│       ├── 2-GCnet(全局特征融合).mp4
│       ├── 3-Coordinate_attention.mp4
│       ├── 4-SPD(可替换下采样).mp4
│       ├── 5-SPP改进.mp4
│       ├── 6-mobileOne(加速).mp4
│       ├── 7-Deformable(替换selfAttention).mp4
│       ├── 8-ProbAttention(采样策略).mp4
│       ├── 9-CrossAttention融合特征.mp4
│       ├── 10-Attention额外加入先验知识.mp4
│       ├── 11-结合GNN构建局部特征.mp4
│       ├── 12-损失函数约束项.mp4
│       ├── 13-自适应可学习参数.mp4
│       ├── 14-Coarse2Fine大框架.mp4
│       ├── 15-只能机器学习模型时凑工作量(特征工程).mp4
│       ├── 16-自己数据集如何发的好(要开源).mp4
│       ├── 17-可变形卷积加入方法.mp4
│       └── 18-在源码中加入各种注意力机制方法.mp4
└── 第八期资料
    ├── 第1章 直播课
    │   ├── 1-1 节开班典礼
    │   ├── 1-3 节直播1:神经网络结构
    │   ├── 1-4 节直播2:卷积神经网络
    │   ├── 1-5 节直播3:Transformer
    │   ├── 1-6 节直播4:VIT源码解读
    │   ├── 1-7 节直播5:Segment anything
    │   ├── 1-8 节直播6:时间序列timesnet
    │   ├── 1-9 直播7:文本大模型下游任务一条龙资料
    │   ├── 1-10 直播8:图神经网络
    │   ├── 1-11 节直播9:LangChain与VQA任务
    │   ├── 1-12 节直播10:EfficientVIT与DINOV2
    │   ├── 1-13 节直播11:对比学习与自监督任务
    │   ├── 1-14 节直播12:注意力机制串讲
    │   ├── 1-16 节直播14:Bev特征空间与知识蒸馏
    │   ├── 1-17 节直播15:总结与论文和简历
    │   └── 15-直播13:BEITV2-3与Mmlab自监督源码解读
    ├── 第2章 AI课程所需安装软件教程
    │   ├── Anaconda3-2020.07-Windows-x86_64.exe
    │   ├── cuda_11.3.0_465.89_win10.exe
    │   ├── mmcv_full-1.4.7-cp38-cp38-win_amd64.whl
    │   ├── notepadplusplus-8-4.exe
    │   ├── pycharm-community-2022.1.2.exe
    │   ├── torch-1.10.0+cu113-cp38-cp38-win_amd64.whl
    │   ├── torchvision-0.11.0+cu113-cp38-cp38-win_amd64.whl
    │   └── VisualStudioSetup.exe
    ├── 第3章 深度学习必备核⼼算法
    │   └── 课件
    ├── 第4章 深度学习核⼼框架PyTorch
    │   ├── 第五章:图像识别模型与训练策略(重点).zip
    │   ├── 第六章:DataLoader自定义数据集制作.zip
    │   ├── 第七章:LSTM文本分类实战.zip
    │   ├── flask预测.zip
    │   ├── PyTorch.pdf
    │   └── 深度学习.pdf
    ├── 第5章 深度学习框架Tensorflow
    │   ├── 课件
    │   └── 源码资料
    ├── 第6章 Opencv图像处理框架实战
    │   ├── 课件
    │   └── 源码资料
    ├── 第7章 综合项⽬-物体检测经典算法实战
    │   ├── YOLO系列(PyTorch)
    │   ├── CenterNet.pdf
    │   ├── 第十二章:基于Transformer的detr目标检测算法.pdf
    │   ├── detr目标检测源码解读.zip
    │   ├── EfficientDet.pdf
    │   ├── EfficientDet.zip
    │   ├── EfficientNet.pdf
    │   ├── json2yolo.py
    │   ├── 可变形DETR.pdf
    │   ├── mmdetection-3.x.zip
    │   ├── 物体检测.pdf
    │   ├── yolov7-main.zip
    │   ├── YOLOV7.pdf
    │   └── Yolov7结构图.pptx
    ├── 第8章 图像分割实战
    │   ├── 补充:Mask2former源码解读
    │   ├── deeplab系列算法
    │   ├── 分割模型Maskformer系列
    │   ├── 基于deeplab的心脏视频数据诊断分析
    │   ├── 基于deeplabV3+版本进行VOC分割实战
    │   ├── 基于Resnet的医学数据集分类实战
    │   ├── 图像分割算法
    │   ├── Unet系列算法讲解
    │   ├── unet医学细胞分割实战
    │   ├── 第5节:U-2-Net.zip
    │   ├── f112c9fda85536ee3eba662c9043e683.bat
    │   ├── mask-rcnn.pdf
    │   ├── MaskRcnn网络框架源码详解.zip
    │   ├── PyTorch框架基本处理操作.zip
    │   ├── R(2+1)D网络.pdf
    │   └── 图像识别核心模块实战解读.zip
    ├── 第9章 走向AI论文实验与项目实战的捷径-MMLAB实战系列
    │   ├── DeformableDetr算法解读
    │   ├── KIE关键信息抽取与视频超分辨率重构
    │   ├── OCR算法解读
    │   ├── 第一模块:mmclassification-master.zip
    │   ├── 第二模块:mmsegmentation-0.20.2.zip
    │   ├── 第二模块:MPViT-main.zip
    │   ├── 第三模块:mmdetection-master.zip
    │   ├── 第四模块:mmocr-main.zip
    │   ├── 第五模块:mmgeneration-master.zip
    │   ├── 第六模块:mmediting-master.zip
    │   ├── 第七模块:mmdetection3d-1.0.0rc0.zip
    │   ├── 第八模块:mmrazor-模型蒸馏.zip
    │   ├── 第九模块:mmaction2-master.zip
    │   ├── mask2former(mmdetection).zip
    │   └── ner.zip
    ├── 第10章 经典视觉项目实战-目标追踪与姿态估计
    │   ├── 第五六七章:YOLO目标检测
    │   ├── 基础补充-Resnet模型及其应用实例
    │   ├── 第一章:姿态估计OpenPose系列算法解读.pdf
    │   ├── 第二章:OpenPose算法源码分析.zip
    │   ├── 第三章:Deepsort算法知识点解读.pdf
    │   ├── 第四章:Deepsort源码解读.zip
    │   ├── 基础补充-PyTorch框架必备核心模块解读.zip
    │   └── 基础补充-PyTorch框架基本处理操作.zip
    ├── 第10章 经典视觉项目实战-行为识别
    │   ├── 基础补充-Resnet模型及其应用实例
    │   ├── slowfast-add
    │   ├── 1-slowfast算法知识点通俗解读.pdf
    │   ├── 4-基于3D卷积的视频分析与动作识别.zip
    │   ├── 5-视频异常检测算法与元学习.pdf
    │   ├── 6-视频异常检测CVPR2021论文及其源码解读.zip
    │   ├── 基础补充-PyTorch框架必备核心模块解读.zip
    │   ├── 基础补充-PyTorch框架基本处理操作.zip
    │   └── slowfast论文.pdf
    ├── 第11章 论文必备Transformer实战解读
    │   ├── 第十二,十三章
    │   ├── 谷歌开源项目BERT源码解读与应用实例
    │   ├── 基础补充-Resnet模型及其应用实例
    │   ├── 2104.00680.pdf
    │   ├── baiduyunguangjia_cfg_A900527E-5BA6-4d22-8E96-E40D5C6EDF61.cfg
    │   ├── BEV.pdf
    │   ├── 第四章:swintransformer算法原理解析.pdf
    │   ├── 第五章:swintransformer源码解读.zip
    │   ├── 第六章:基于Transformer的detr目标检测算法.pdf
    │   ├── 第七章:detr目标检测源码解读.zip
    │   ├── Informer.pdf
    │   ├── Informer.zip
    │   ├── 可变形DETR.pdf
    │   ├── Loftr.pdf
    │   ├── LoFTR.zip
    │   ├── mask2former.pdf
    │   ├── maskformer.pdf
    │   ├── Medical-Transformer.zip
    │   ├── mmdetection-master.zip
    │   ├── transformer.pdf
    │   └── Transformer在视觉中的应用VIT算法.pdf
    ├── 第12章 图神经⽹络实战
    │   ├── 3-图模型必备神器PyTorch Geometric安装与使用
    │   ├── 4-使用PyTorch Geometric构建自己的图数据集
    │   ├── 5-图注意力机制与序列图模型
    │   ├── 6-图相似度论文解读
    │   ├── 7-图相似度计算实战
    │   ├── 8-基于图模型的轨迹估计
    │   ├── 9-图模型轨迹估计实战
    │   ├── 第一章:图神经网络基础
    │   ├── 第二章:图卷积GCN模型
    │   ├── 基于图模型的时间序列预测
    │   └── 异构图神经网络
    ├── 第13章 3D点云实战
    │   ├── 第1节:3D点云应用领域分析
    │   ├── 第2节:3D点云PointNet算法
    │   ├── 第3节:PointNet++算法解读
    │   ├── 第4节:Pointnet++项目实战
    │   ├── 第5节:点云补全PF-Net论文解读
    │   ├── 第6节:点云补全实战解读
    │   ├── 第7节:点云配准及其案例实战
    │   └── 第8节:基础补充-对抗生成网络架构原理与实战解析
    ├── 第14章 ⾯向深度学习的⽆⼈驾驶实战
    │   ├── 1.深度估计算法解读
    │   ├── 2.深度估计项目实战
    │   ├── 3-车道线检测算法与论文解读
    │   ├── 4-基于深度学习的车道线检测项目实战
    │   ├── 5-商汤LoFTR算法解读
    │   ├── 6-局部特征关键点匹配实战
    │   ├── 7-三维重建应用与坐标系基础
    │   ├── 8-NeuralRecon算法解读
    │   ├── 10-NeuralRecon项目源码解读
    │   ├── 11-TSDF算法与应用
    │   ├── 12-TSDF实战案例
    │   ├── 13-轨迹估计算法与论文解读
    │   ├── 14-轨迹估计预测实战
    │   └── 15-特斯拉无人驾驶解读
    ├── 第15章 对比学习与多模态任务实战
    │   ├── ANINET源码解读
    │   ├── CLIP系列
    │   ├── 对比学习算法与实例
    │   ├── 多模态3D目标检测算法源码解读
    │   └── 多模态文字识别
    ├── 第16章 缺陷检测实战
    │   ├── 第1-4章:YOLOV5缺陷检测
    │   ├── 第6-8章:Opencv各函数使用实例
    │   ├── 第11-12章:deeplab
    │   ├── PyTorch基础
    │   ├── Resnet分类实战
    │   ├── 第5章:Semi-supervised布料缺陷检测实战.zip
    │   ├── 第9章:基于Opencv缺陷检测项目实战.zip
    │   ├── 第10章:基于视频流水线的Opnecv缺陷检测项目.zip
    │   └── DeepLab铁质材料缺陷检测与开源项目应用流程.zip
    ├── 第17章 ⾏⼈重识别实战
    │   ├── 第1节:行人重识别原理及其应用
    │   ├── 第2节:基于注意力机制的ReId模型论文解读
    │   ├── 第3节:基于Attention的行人重识别项目实战
    │   ├── 第4节:经典会议算法精讲(特征融合)
    │   ├── 第5节:项目实战-基于行人局部特征融合的再识别实战
    │   ├── 第6节:旷视研究院最新算法解读(基于图模型)
    │   └── 第7节:基于拓扑图的行人重识别项目实战
    ├── 第18章 对抗⽣成⽹络实战
    │   ├── 第4节:stargan论文架构解析
    │   ├── 第6节:基于starganvc2的变声器论文原理解读
    │   ├── 第8节:图像超分辨率重构实战
    │   ├── 第9节:基于GAN的图像补全实战
    │   ├── cyclegan.pdf
    │   ├── 第2节:对抗生成网络架构原理与实战解析.zip
    │   ├── 第3节:基于CycleGan开源项目实战图像合成.zip
    │   ├── 第5节:stargan项目实战及其源码解读.zip
    │   ├── 第7节:starganvc2变声器项目实战及其源码解读.zip
    │   └── static.zip
    ├── 第19章-强化学习实战系列
    │   ├── 第1节:强化学习简介及其应用.pdf
    │   ├── 第2节:PPO算法与公式推导.pdf
    │   ├── 第3节:策略梯度实战-月球登陆器训练实例.zip
    │   ├── 第4节:DQN算法.pdf
    │   ├── 第5节:DQN算法实例演示.zip
    │   ├── 第7节:Actor-Critic算法分析(A3C).pdf
    │   └── 第8节:A3C算法玩转超级马里奥.zip
    ├── 第20章 面向医学领域的深度学习实战
    │   ├── 1-神经网络算法PPT
    │   ├── 4-基于Resnet的医学数据集分类实战
    │   ├── 5-图像分割及其损失函数概述
    │   ├── 6-Unet系列算法讲解
    │   ├── 7-unet医学细胞分割实战
    │   ├── 8-deeplab系列算法
    │   ├── 9-基于deeplabV3+版本进行VOC分割实战
    │   ├── 10-基于deeplab的心脏视频数据诊断分析
    │   ├── 11-YOLO系列物体检测算法原理解读
    │   ├── 12-基于YOLO5细胞检测实战
    │   ├── 13-知识图谱原理解读
    │   ├── 14-Neo4j数据库实战
    │   ├── 15-基于知识图谱的医药问答系统实战
    │   ├── 17-医学糖尿病数据命名实体识别
    │   ├── 2-PyTorch框架基本处理操作.zip
    │   ├── 3-PyTorch框架必备核心模块解读.zip
    │   └── 16-词向量模型与RNN网络架构.zip
    ├── 第21章 经典大模型解读
    │   ├── 1 节GPT系列生成模型
    │   ├── 2 节GPT建模与预测流程
    │   ├── 3 节CLIP系列
    │   ├── 4 节Diffusion模型解读
    │   ├── 5 节Dalle2及其源码解读
    │   └── 6 节ChatGPT
    ├── 第22章 深度学习模型部署与剪枝优化实战
    │   ├── 嵌入式AI
    │   ├── Docker使用命令.zip
    │   ├── 剪枝算法.pdf
    │   ├── Mobilenet.pdf
    │   ├── mobilenetv3.py
    │   ├── pytorch-slimming.zip
    │   ├── PyTorch模型部署实例.zip
    │   ├── TensorFlow-serving.zip
    │   └── YOLO部署实例.zip
    ├── 第23章 ⾃然语⾔处理经典案例实战
    │   ├── 课后作业
    │   ├── 课件
    │   ├── NLP常用工具包
    │   └── 源码、数据集等
    ├── 第24章 自然语言处理必备神器Huggingface系列实战
    │   ├── 第一章:Huggingface与NLP介绍解读
    │   ├── 第二章:Transformer工具包基本操作实例解读
    │   ├── 第三章:transformer原理解读
    │   ├── 第四章:BERT系列算法解读
    │   ├── 第五章:文本标注工具与NER实例
    │   ├── 第六章:文本预训练模型构建实例
    │   ├── 第七章:GPT系列算法
    │   ├── 第八章:GPT训练与预测部署流程
    │   ├── 第九章:文本摘要建模
    │   ├── 第十章:图谱知识抽取实战
    │   └── 第十一章:补充Huggingface数据集制作方法实例
    ├── 第25章 时间序列预测
    │   ├── Informer.pdf
    │   └── Informer.zip
    ├── 第26章 ⾃然语⾔处理通⽤框架-BERT实战
    │   ├── 课后作业
    │   └── 课件、源码
    ├── 第27章 知识图谱实战系列
    │   ├── 第1.2节:知识图谱介绍及其应用领域分析
    │   ├── 第3节:Neo4j数据库实战
    │   ├── 第4节:使用python操作neo4j实例
    │   ├── 第5节:基于知识图谱的医药问答系统实战
    │   ├── 第6节:文本关系抽取实践
    │   ├── 第7节:金融平台风控模型实践
    │   └── 第8节:医学糖尿病数据命名实体识别
    ├── 第28章 语音识别实战系列
    │   ├── 论文
    │   ├── PPT
    │   ├── 变声器pytorch-StarGAN-VC2.zip
    │   ├── 语音分离Conv-TasNet.zip
    │   ├── 语音合成tacotron2实战.zip
    │   └── 语音识别LAS模型.zip
    └── 第29章 推荐系统实战系列
        ├── 第3节:音乐推荐系统实战
        ├── 第4节:Neo4j数据库实例
        ├── 第10节:基于统计分析的电影推荐
        ├── 第1节:推荐系统介绍.pdf
        ├── 第2节:协同过滤与矩阵分解.pdf
        ├── 第5节:基于知识图谱的电影推荐实战.zip
        ├── 第6节:FM与DeepFM算法.pdf
        ├── 第7节:DeepFM算法实战.zip
        ├── 第8节:推荐系统常用工具包演示.zip
        ├── 第9节:基于文本数据的推荐实例.zip
        └── 第11节:补充-基于相似度的酒店推荐系统.zip

分享链接为:我用夸克网盘分享了「咕泡-人工智能深度学习系统班(第八期)」,点击链接即可保存。打开「夸克APP」,无需下载在线播放视频,畅享原画5倍速,支持电视投屏。
链接:https://pan.quark.cn/s/1b26ab9dfc19
一个沉寂多年的IT猪儿虫
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

Archiver|手机版|小黑屋|自学网 ( 蜀ICP备2022021821号-1 )

GMT+8, 2025-6-22 12:48 , Processed in 0.046016 second(s), 19 queries .

Powered by Discuz! X3.5

© 2001-2025 Discuz! Team.

快速回复 返回顶部 返回列表